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1. Introduction 
 
 
This report presents the supporting tasks and deliverables for Task 2 of the project.  
 
The deliverables defined for this task were as follows:   

 
Task 1 – Research Existing, Develop New, and Prioritize Machine Learning Algorithms for 
Incident Detection in Traffic Control  
 
 
Conduct a literature review of existing applications of the use of machine learning 
algorithms for incident detection in traffic control and document possible new 
approaches that may be relevant.  
 
Task 1 Deliverable:  Upon completion of Task 1, the University will submit to the 
Research Center at research.center@dot.state.fl.us a written Technical Memorandum 
detailing the literature review.  
 
 
Task 3 – Conduct Literature Survey for Fusion and Incident Detection with a focus on 
transportation applications 
 

We will conduct a detailed literature survey of the use of intersection control data and  

• Strengths and weaknesses of current approaches for fusion data. 
• Strengths and weaknesses of current approaches for incident detection. 

Whenever reasonable and feasible, the work will incorporate best practices and business 
glossary for data as per the ROADS initiative.   

Task 3 Deliverable:  Upon completion of Task 3, the University will submit to the 
Research Center at research.center@dot.state.fl.us written a Technical Memorandum that 
provides a description of current approaches for fusion and incident detection with a 
focus on transportation applications. 

The specific subtasks are outlined as follows along with the section numbers in the report that 
pertain to these subtasks. 
 

1. Conduct a literature review of existing applications of the use of machine learning 
algorithms for incident detection in traffic control (Section 7) 

2. Document possible new approaches that may be relevant (Section 7,10) 
3. We will conduct a detailed literature survey of the use of intersection control data and 

PCD data (Section 3,4,5,6) 
4. Strengths and weaknesses of current approaches for fusion data (Section 9) 
5. Strengths and weaknesses of current approaches for incident detection (Section 7,10) 

 

  



 

 

 

2. Background 
 
Automated Incident Detection (AID) is of significant interest in modern transportation networks. 
This is because traffic incidents and congestion can impede commercial activities and hurt the 
economic growth of a region. By detecting incidents quickly, the incident-response times can be 
reduced, along with the negative impacts of the resultant congestion and secondary incidents. 
 
While direct and manual TMC monitoring has been adequate for previous years, many TMCs have 
had limited operational use of automatic incident detection techniques. This is due to these 
techniques’ high rates of false alarms, complex calibration and low detection rates [1]. In fact, many 
automatic incident detection algorithms perform poorly in the real-world compared to traffic simulated 
environments [2]. However, the steady growth and development in transportation networks has 
motivated a need for highly-reliable automated methods to detecting incidents on urban 
transportation networks. 

 
Advanced Incident Detection algorithms using computational statistics or machine learning has 
been the research community’s most recent offering on this subject. Significant efforts have 
been made to apply techniques such as genetic algorithms [4], Bayes classifiers [5], support 
vector machines [6] [7] [8], neural networks [9] [10] [11], deep learning [12] [13], fuzzy logic [13] 
[14], wavelet transformation [15][16] [17] and other artificial intelligence techniques [18] for 
incident detection. These modern techniques are data-centric, using historic and real-time data 
to detect various types of traffic incidents. Consequently, these advanced solutions are only as 
good as the data they are built on. 
 
Arterial roads have different characteristics from freeways, since arteries feature more dynamic 
traffic due to the influence of several factors: (1) closely-spaced traffic signals and intersections, 
(2) dynamic queues at the intersections, (3) pedestrian crossings and jaywalking, (4) road-side 
parking, (5) exit/entry into/from collector-lanes, (6) public transport bus-stops, (7) arterial road-
work, etc. These factors make incident detection on arteries potentially more difficult. While, 
solutions for arterial roads must consider data from heterogeneous sources in order to account 
for the complicating factors mentioned. 

 
In this survey, existing machine learning algorithms for incident detection in traffic control are 
reviewed and evaluated. While data from FDOT detectors, probe cars, Twitter, and human 
reporting/event verification systems will each have a differential impact on the accuracy of 
incident detection, modern data fusion techniques could enhance the overall quality of 
combined traffic information. We summarize the successful techniques in this area along with 
the corresponding performance criteria, and document possible new approaches. 
 
A traffic incident is a non-recurring and unexpected occurrence that has a noticeable undesirable 
effect which could temporarily disrupt traffic on some segment of the transportation network [1] [3]. 
An incident detection, on the other hand corresponds to generation of an incident report [3]. 
Examples of traffic incidents are traffic accidents, non-recurrent congestion, abandoned or stalled 
vehicles, spillage of oil or debris, structural fires, etc. Timely incident detection is important since it 
allows emergency responders to address the incident promptly, and enables traffic management 
centers to redistribute and reroute the oncoming traffic into alternate lanes in the transportation 
network. This reduces the impact of the primary incident, and avoids creating secondary incidents or 
follow-on congestion. 
 
Incident detection solutions may be manual or automatic. While manual solutions are based on 
human reporting systems, automatic incident detection (AID) algorithms attempt to automatically set-



 

 

off an alarm using anomaly detection techniques with respect to traffic conditions. The following list 
[1] [2] shows the developments in AID algorithms research with respect to statistics and pattern-
recognition: 
 

 Standard Normal Deviate algorithm [19]  
 California family of algorithms [20][21]  
 Bayesian algorithms [22][23]  
 Time Series algorithms [24]  
 Smoothing/Filtering algorithms [25][26]  
 Traffic Modeling algorithms [27]  
 McMaster catastrophe theory-based algorithm [28]  
 Image Processing algorithms [29][30]  
 MIT algorithms [31]  
 ADVANCE algorithms [3][32]  
 TTI algorithms [33]  
 UCB algorithms [34]  
 TRANSMIT algorithms [35][36]  
 Waterloo algorithms [37] 

 
In the last two decades, data-centric algorithms based on computational statistics and machine 
learning have been developed to produce advanced incident detection algorithms. These 
advanced algorithms are superior in terms of their performance, as measured by the standard 
performance metrics. Three performance criteria for incident detection are as follows: 
 

1. Detection Rate (DR):  Fraction of actual incidents that are correctly categorized as 
incidents.  

2. False Alarm Rate (FAR): Fraction of actual incidents that are correctly categorized as 
incidents. FAR corresponds to fraction of non-incident periods that the algorithm 
incorrectly categorizes as incidents [3].  

3. Mean Time to Detect (MTTD): Average response time of the algorithm. 
 
There is usually a trade-off, as well as a compromise, between these the above performance 
factors. While Ren, Jimmy SJ et al. (2012) [65] demonstrate trade-offs between FAR and 
MTTD, several TMCs acknowledge that early detection is more important than a high detection 
rate. Lastly, the algorithm’s ease of calibration is another important factor taken into 
consideration by TMCs when adopting an AID solution. 

3. Data Sources 
 
The performance of the algorithms depends on the quality of the traffic data collected. Reliable 
sensor technologies and data feeds provide data with high accuracy, granularity and wide 
spatio-temporal coverage. There are three major sources of data used for automatic incident 
detection: 
 

1. Traditional Signal Systems (Roadway based Fixed Point/Section) 
2. Probe-based (Floating Car) 
3. Human reporting systems/Event verification/Driver based  

 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1: Traffic data sources and their respective data-of-interest 

4. Traditional Signal Systems 
 
Traditional Signal Systems sensors are fixed and measure traffic at a single point/section of a 
roadway. These systems exist in all urban areas, most of suburban areas, but are limited in 
rural areas. These include Inductive Loop Detectors (ILD), loop emulators, sensors (microwave, 
radar, infrared, ultrasonic, acoustic), pneumatic tubes, cameras and video image processors. 
Data collected includes traffic volume, occupancy, spot speed, vehicle passage/presence, 
queue length, turning ratios, vehicle classification, travel speed, travel time, etc. 
 
AID algorithms using signal systems roadway data rely heavily on adjacent fixed detectors. 
Apart from an incident possibly reducing traffic flow at nearby detectors, the basic assumption is 
that an incident would cause a substantial increase in occupancy at the upstream detector, 
while producing a corresponding decrease in occupancy at the adjacent downstream detectors 
[38][39][40][41][42][43]. Existing works compare the space-time occupancy to a particular 
threshold value. However, selection of different threshold values produce very unique results. 
The California algorithm [38] estimates this threshold value using historical traffic data, and 
detects incidents by taking into account the absolute difference in occupancy of adjacent 
detectors as well as the relative difference with respect to the upstream or downstream detector. 
Fluctuations in occupancy can occur due to loop-detector errors and statistical variations. 
Hence, a range of values can be defined in order to identify the start (out-of-range) or the 
termination (back-in-range) of an incident [39]. Smoothed-averages and exponential-smoothing 
were old methods for estimating the threshold will mostly be effective for incidents that occurred 
close to a detector [40] [41]. Kalman filtering was another popular technique to estimate traffic 
flow, speed and occupancy [42] [43], but it would produce algorithms whose calibration was 
quite complex. There was a need for new approaches to accurately estimate the occupancy 
threshold value. 
 
While conventional solutions, which apply fixed-threshold values for traffic occupancy, speed 
and volume, suffer from high false alarm rates, modern solutions [44] [45] [46] adapt their  
threshold-values based on real-time traffic data . The multiresolution property of wavelet 
transforms can be used to vary the threshold values for incident detection [44] [45]. Discrete 
wavelet transforms would be used to decay traffic data into different resolution–time elements in 
order to extract occupancy and speed data. This would produce threshold values that fluctuate 



 

 

in relation to the traffic measurements. The threshold can also be based on the level of demand 
on a roadway segment. Asare et al. [46] use the Hilbert-Huang transform to decompose traffic 
data, exploiting the empirical mode decomposition (EMD) and Hilbert spectral analysis (HSA) to 
adaptively change the threshold to correspond to the current demand level. Both Wavelet 
transforms and Hilbert-Huang transforms produce algorithms with the highest Detection Rate, 
lowest False Alarm Rate and shortest Mean–Time-To-Detection, compared to existing fixed 
point solutions. 
 
Fixed point detectors are restricted to providing traffic-data from limited fixed points in the 
roadway. Hence, it is difficult to use this  data to realistically model the traffic conditions that are 
spatially continuous. 

5. Probe Based Systems 

 
Probe based sensors are usually mounted on individual vehicles that are mobile, and provides 
data at a single point, pair of points and sections. The reliability of probe data depends on the 
penetration rate, but it can measure a wider-area of a roadway compared to fixed sensors. 
Floating cars can provide traffic measurements in real-time with good spatial and temporal 
coverage at a very inexpensive cost. Probe data is provided by several third-parties like 
Here.com, TrafficCast, etc. These sensors include GPS receivers, Bluetooth readers, Toll 
Transponders, e-Tag readers, on-board units, smartphones, and any other in-vehicle telematics. 
Data collected includes origin-destination data, timestamp, location, speed, direction, density, 
queue length, turning ratios, route preferences, mode sharing, etc. 
 
The main assumption behind using probe car data is that probe vehicles that pass an incident 
would have a relatively higher total time, coefficient of speed variation, and travel 
time[32][33][35]. The travel time during an incident is very high when compared to non-incident 
conditions from compare time of the day and day of the week [33] [35] [37] [58]. Furthermore, it 
has been shown that the travel time for a road section increases more quickly due to the 
capacity decrease caused by an incident as compared to increased demand [37]. Hence, it is 
believed that travel times before and after an incident should be viewed as belonging to two 
different populations. Probe car data comprised of traffic measurements for a link is very useful 
if the incident occurs downstream from that same link, but not upstream [3], and AID algorithms 
perform better when this probe car data measurement is more detailed [32]. 
 
A high penetration rate is crucial for Probe data based algorithms, which may perform worse 
than fixed detector based algorithms when the penetration rate is low [33] [35]. If the algorithm 
is based on mean travel-time, then a 50% penetration is required for good performance [59]. 
Petty et al. (1997) [34] provides a model that can be useful in  estimating an  upper-bound on 
the detection rate for probe vehicle density in a defined cell. They claim that only a single probe 
vehicle is required in a defined cell, in order to detect the incident occurrence within that cell. 
 
Probe data covers longer sections of the urban roadway than fixed detectors, and is especially 
useful for detecting secondary incidents or non-recurrent congestion which are likely to occur 
away from the primary incident[48][53]. 

6. Human Reporting Systems 
 
Human Reporting Systems provides anecdotal information from incident reports made directly 
by drivers, road crews, patrol units, and other travelers on the road. This type of incident 
detection is manual rather than automated, but it provides a very rich source of information 
because the incident can be described very clearly with regard to its location, time, type, and 
severity [54] [55]. Driver based reports over the cellular phone is usually the fastest mode of 
incident detection [1], and requires very less investment for operation and maintenance. 



 

 

However, these reports are difficult to process and could contain false reports due to mistakes 
or malice. Mussa, R., & Upchurch, J. [56] [57] show that an incident detection system using cell 
phone calls (or tag-based digital messaging) from drivers could have lower Detection Times and 
higher Detection Rates. However, they do not completely consider malicious incident reports. 
Sources include Twitter tweets, wireless/cellular phone reports, roadside call boxes, patrol crew, 
road crew, Waze, etc. 
 
Twitter is a very inexpensive method for incident detection. However, it is very brittle due to 
dependence on the Social-Media organization to allow access to the data. Gu et al. (2016) [66] 
presents methods to classify tweets. Tweets can be acquired in real-time using Twitter’s 
streaming REST API and using a set of important keywords that could imply traffic incidents. 
They use this information to  classify each tweet as an incident or non-incident, and then 
categorized them by location. They claim that there is more incident information on Twitter 
during the weekends and during the daytime, 60-70% are posted by influential users, and the 
tweets are usually about incidents that are closed to  the center of a city. Studies have been 
performed to determine the value of tweets in incident detection [67] where they selected 
features in order to extract both the individual and paired token features from Twitter’s social 
media site. They address several issues for detecting incidents from tweets: such as the 
language customs that Twitter users would frequently use to describe a traffic incident, the time, 
location and user influence bias. 
 

7. Incident Detection Algorithms 

 
Threshold Based Systems: Conventional incident detection algorithms use threshold-values to 
determine if an incident has occurred. A system that compares against precise threshold values 
cannot consistently classify incident vs non-incident conditions in an accurate manner. This is 
due to the lack of quality (loss/approximation of information) in the available traffic data, or even 
an overlapping membership in multiple sets, such as an incident spread spatio-temporally over 
multiple links [48]. As a result, this ambiguity may cause lower detection rates and higher false 
alarm rates. Fuzzy Logic can minimize error due to uncertainty in parameters by providing 
approximate reasoning instead of precise reasoning. It provides membership functions, with a 
range between 0 and 1, that represent the odds of membership in a particular set. After all 
calculations and computations are completed, if the cumulative membership value is greater 
than some threshold, the membership to that particular set holds true. 
 
AID solutions using Fuzzy Logic are simpler to calibrate, maintain and debug when compared to 
other AID algorithms [49] [50] [51]. In machine learning solutions [52], Fuzzy Logic can be used 
to reduce errors, speed up convergence, and control the parameters or learning rate of the 
model in order to avoid overshooting during the training period. Chang, E. C. P., & Wang, S. H. 
(1994) [50] stress the necessity of automated learning techniques in incident detection. Hence, 
marrying machine learning with fuzzy logic would undoubtedly benefit AID algorithms by 
minimizing error due to uncertainty in data points. 
 
Neural Networks: Artificial neural networks (ANNs) are computing systems that learn to make 
decisions in the absence of specific rules, by considering examples instead. With respect to 
incident detection, Cheu and Ritchie (1995) [10] found that multi-layer feed-forward neural 
networks performed better than self-organizing feature maps (SOFM) and adaptive resonance 
theory model 2 (ART2). Neural networks (NN) have been used to estimate traffic volumes [70] 
and incident detection [71]. However, constructive probabilistic neural networks (CPNN) can use 
a smaller sized network to achieve the same results [72]. Ivan and Sethi (1998) [71] focus on 
identifying the factors that would predict the occurrence of traffic incidents. They show that by 
adjusting the algorithm's inputs to avoid false alarms, neural networks can perform better than 
discriminant analysis models. Furthermore, their results indicated that additional inputs, like 
historical input-output data of the algorithm along with conditions of adjacent links, would further 



 

 

improve detection rates and false alarms. Hence, they trained and connected three more neural 
networks providing these data. They found significant performance improvement with the 
addition of each extra type of input data, with the full network demonstrating the best 
performance. Their results suggest that time series is beneficial to the solution. The 
performance of neural networks can also be improved by careful selection of parameters. For 
example, Roy and Abdulhai (2003) [4] use genetic algorithms to optimize the selection of 
parameters in a probabilistic neural network (PNN) and achieve lower detection rates while 
experiencing less false alarms. Similarly, fuzzy logic [13] has also been used for controlling the 
parameters in neural networks. Dia and Rose (1997) [9] use a multilayer perceptron neural 
network to detect incidents. The authors also evaluate the relevance of data quality with respect 
to the model's performance. For detecting traffic incidents, or even arterial operational problems, 
neural networks generally perform better than other types of classifiers [71] [47], except possibly 
support vector machines. 
 
Support Vector Machine (SVM): is suitable for finding the global best solution when dealing 
with small sample data and non-linear but high-dimensional problems and has been found to 
be  good machine learning technique used to detect traffic incidents [60]. SVM for incident 
detection has a higher detection rate, lower false alarm rate, and shorter average detection 
time than multi-layer feed forward neural networks [51]. Ant Colony Algorithm (ACA) has  been 
used for  parameter selection that is crucial for its learning accuracy and generalization ability 
[7] [61]. Shuyan Chen et al. [61] combines an ensemble of SVM classifiers for traffic incident 
detection, and in doing so, they improve on the basic SVM and overcome the crucial task of 
SVM parameter selection. 
 
Unsupervised learning: Unsupervised learning is proving useful to detect incidents that are not 
well-defined, such as arterial operational problems [41], and secondary crashes or congestion 
[48] [62]. Yang H. et al. (2017) [48] uses probe car data to identify secondary crashes or non-
recurrent congestion. They reduce duplicate reports, or false alarms, by using unsupervised 
learning via Fuzzy C-Means clustering (i.e. K-Means clustering with Fuzzy logic) to detect the 
impact area of a primary incident. Finally, they use meta-heuristics optimization (genetic 
algorithms or Ant-colony optimization) to minimize the boundary of the impact area which could 
contain secondary crashes or non-recurrent congestion. Anbaroglu et al. (2014) [62] use spatio-
temporal clustering to identify significantly large link-journey times across single or adjacent 
links. Clustering of spatio-temporally overlapping episodes can be used to detect non-recurrent 
congestion that span multiple links. The CUSUM algorithm detects incidents in arterial roads by 
applying the CUSUM chart in order to identify incident-based changes in traffic measurements 
that tend to linger for some time under incident-free conditions. This is an early form of 
unsupervised learning based anomaly detection for traffic incidents. 
 
Modern forms of unsupervised anomaly detection [63] [64] of incidents use probe car 
data. Kinoshita et al. (2014) [63] claim that traffic congestion may be a chronic condition 
in some roadways and may not always be due to incidents. Thus, they attempt to 
distinguish between incidents and transient congestion in the transportation network by 
using a probability model with maximum-likelihood parameters and an expectation 
maximization algorithm. Zhu et al. [64] applied a distance-based outlier mining method 
in order to identify incidents in arterial roads. They used fluctuations in the travel speed 
and chose speed differences in nearby sections and adjacent intervals for spatio-
temporal analysis. 
 
Arterial operational problems provide yet another form of incidents [41] [47]. Operational 
problems include detector malfunctioning, signal malfunctioning, lane-blocking incidents, etc. 
Due to the lack of a well-defined training set for these types of problems, unsupervised learning 
or other innovative schemes must be used. Khan and Ritchie (1998) [47] use neural network 
classifiers in a modular architecture. 



 

 

 
Lastly, Ren, Jimmy SJ et al. (2012) [65] attempted to improve AID by enhancing the feature 
representation of incidents via an unsupervised feature learning algorithm which produced 
higher level features to describe incidents. This allows the use of unlabeled data, or a reduced 
amount of required labeled data in case of a semi-supervised approach. 
 

8. Secondary Incidents and Non-Recurrent Congestion 
 
Primary Incidents are usually assumed to cause secondary incidents. Hence, detection of an 
incident could necessitate detection of such incidents [48] [53] [62]. Anbaroglu, B., et al. (2014) 
[62] present a Non-recurrent congestion (NRC) event detection method using spatio-temporal 
clustering to detect excessive link-journey times across single/multiple-adjacent link(s). Non-
recurrent congestion in adjacent links are clustered together in one episode if they contain at 
least one common time interval in their duration. A spatio-temporal temporal clustering using 
overlapping episodes, can be used to detect secondary incidents that span multiple links. The 
frequency of secondary incidents is directly related to the length of primary incidents [53. They 
use GPS probe car data to infer the existence of secondary incidents, and then utilize Gaussian 
Mixture Model (GMM) to determine the reference speed for classification of such events. 
 

9. Data Fusion Techniques 
 
Data fusion is an interdisciplinary method that provides techniques to combine data from several 
sources in order to achieve synergy with respect to the resultant information derived. The JDL 
model developed by the U.S. department of Defense is the most popular work on data fusion in 
general, providing five levels for processing system-level information. In Intelligent 
Transportation Systems (ITS), each data source brings with it a new challenge. Fixed detectors 
have low area coverage and accuracy, while probe cars have a low penetration rate, and driver 
reports are very sparse. However, each new data source also provides us with a new 
advantage. Since the advancement of road/vehicle telematics, multiple sources of data provide 
multiple views into traffic conditions. This helps reduce the vagueness and incompleteness 
characteristic of individual data sources and thereby, allows us to use data fusion in order to 
augment our interpretation of observed traffic measurements. It is hypothesized that this fusion 
would result in performance improvement of the incident detection system. 
 
Existing data fusion techniques [73] for ITS applications: 
 

 Bayesian Inference 
 Dempster-Shafer evidential theory 
 Artificial Neural Networks 
 Fuzzy Logic 
 Knowledge Based Expert Systems 
 Particle Filtering and Kalman/Extended-Kalman Filtering  
 Monte Carlo techniques 

 
The earliest works on data fusion for ITS [3] [74] each proposed data fusion frameworks to solve 
issues in traffic or transportation using travel time estimation and incident detection, 
respectively. In the case of incomplete data which is insufficient for automatic incident detection, 
it is recommended to fuse the sensor data or fuse the outputs from incident detection algorithms 
[75]. 



 

 

 
Figure 2: Algorithm output fusion concept (Source: [81]) 

 
Sethi et al. (1995) [3], proposed using fixed detector data and probe car data separately in two 
different algorithms, as part of the ADVANCE ITS, and then used discriminant analysis to 
estimate incidents. They intended to study how each type of data could complement the other, 
and concluded that traffic measurements at a particular location were useful for detecting 
incidents that occurred downstream. They inferred that the fixed detector algorithm performed 
better than the probe vehicle algorithm, and further observed that the benefit from fixed detector 
data was dependent on the number of instrumented links in the transportation network, while 
the benefits of probe car data was limited by reporting rate. Subsequently, they [81] combine the 
outputs of the two algorithms into a fusion algorithm and develop an AID using surveillance 
data. Neural Networks were used in two ways: (1) Algorithm Output Fusion which uses neural 
network to fuse the separate incident-likelihood scores that were output from the fixed detector 
algorithm and probe vehicle algorithm (Figure 2), and (2) Integrated Fusion which fuses the raw 
data from both sources and determines the occurrence of an incident. It accomplishes this by 
combining the functions of fusion and single source algorithms into a single feed-forward neural 
network. In effect, this integrated fusion attempts to detect incidents by using both data sources 
simultaneously, but not separately. The raw data consists of  

1. volume and occupancy (from fixed detectors)  
2. travel time (from probe cars).  

The neural network architectures for both fusion algorithms are shown in Figure 3. 
 
The authors show that using data from both sources improved the AID compared to using data 
from any single source alone. Consequently, they [82] experimented with this idea on the 
Algorithm Output Fusion module and demonstrated considerable improvements in incident 
detection. Lastly, they [71] compared the performance of automatic incident detection on 
signalized arterial streets by fusing data via discriminant analysis and via neural networks. 
Although they conceded to using driver based reports as an anecdotal data source for manual 
manipulation of the algorithm, they concluded that neural networks performed better than 
discriminant analysis. 
 



 

 

 
Figure 3: Neural network structures for fusing  multiple data types (Source: [2]) 
 
With respect to the ADVANCE ITS, Bhandari et al. (1995) [90] also proposed an automatic 
incident detection system for arterial streets leveraging three separate sources: fixed detector 
data, probe vehicle data, as well as anecdotal reports. They use three independent modules to 
pre-process the data from each source separately. The fusion process first uses discriminant 
analysis to fuse the pre-processed results of fixed detector data and probe car data. Next, the 
process fuses the resulting output with the output of the anecdotal algorithm, as shown in Figure 
4. Hussein & Thomas (2005, 2011) [77] [78] used neural networks to combine simulated loop 
detector data and simulated probe car data for incident detection on arterials. They compared 
several neural network architectures by varying probe vehicle penetration rates and detector 
configurations. Multi-layer feed-forward neural network allowed inclusion of historical data which 
further improved the results, as did the addition of speed data. Yin et al. (2006) [86] uses toll 
data  for automatic incident detection. 
 



 

 

 
 

Figure 4: Data fusion system for integration of multiple  data sources (Source: [2]) 
 

Dempster-Shafer evidential theory is used for data fusion in order to detect incidents as well as 
other traffic and transportation events [83] [84] [85]. Byun et al. (1999) [85] attempts to solve 
traffic congestion problems in links having limited capacity by assigning weights to incident 
reports, thereby identifying true incidents and false incidents, i.e. possible false alarms. They 
run an incident detection algorithm on three data sources separately: loop detectors, CCD 
cameras, and Probe Vehicles. Dempster-Shafer’s algorithm is used to fuse the three results and 
increase the accuracy of traffic-condition reports. Klein et al. (2000, 2002) [83][84] uses 
Dempster-Shafer’s algorithm to combine data from three different sources in order to detect and 
verify incidents and other traffic events, especially when the individual data sources cannot 
determine the occurrence of an event with full confidence. The author provides an example 
where all available data is combined using Dempster-Shafer’s rule allowing them to distinguish 
the most probable event. Zeng et al. (2008) [87] claim that raw data from individual sources may 
be corrupted with unexpected missing values. They demonstrate creating an SVM classifier for 
each of three different sources of traffic data: loop inductive detector, AVI (automated vehicle 
identification) observation and floating car data (FCD). They use Dempster-Shafer’s evidence 
theory to combine the multiple SVM-classifiers. 
 
Bayesian inference has been used to detect incidents via a multiple-attributes decision-making 
view. Thomas (1996) [79] combined occupancies and volumes reported by induction loop 
detectors along with probe car data. Observations showed that algorithms based on fixed-



 

 

detector data performed well. While probe car data alone suffered from an excess of overlaps in 
class distributions, it complemented fixed-detector data quite well. Next, Thomas (1998) [80] 
proposed an incident detection approach based on two characteristics: 1) We can classify 
arterial traffic into several states based on the type of sensor (fixed detectors or probe-cars); 
and 2) We must use a multi-variable vector (as opposed to a scalar) as the discrimination 
criterion for an incident. The algorithm was tested using data from a modified INTRAS 
simulation. The types of data included probe car travel time, number of probe reports, lane 
specific detector occupancies and vehicle counts. This approach uses multivariate classifiers to 
distinguish multiple traffic states on arterials. 

 
Figure 5: Arterial incident detection systems using multiple sensors and multiple states (Source: 
[2]) 
 
Thomas (1998) [80] proposed two types of system configurations shown in Figure 5. System A 
processes spot detector data and spatial travel times on the link-level. System B uses probe 
data and spatial data on the link-level by preprocessing spot detector data. The results 
demonstrate that the supplementation of probe data enhances the performance of detector-
based algorithms. 
 
Cohen (2003) [76] uses three schemes to fuse the output of multiple incident detection 
algorithms. He used logical aggregation, neural network fusion, and a veto procedure. His 
validation step uses real-world data and demonstrates that the logical aggregation and veto 
procedure results in considerable performance improvement when compared to any single 
source detection algorithm alone. Westerman et al. (1996) [88] performs incident detection and 
estimates travel-time by allowing a loop detector algorithm and a probe data algorithm to 
operate separately, while simultaneously complementing each other. Their algorithms use two 
stages (see Figure 6). 



 

 

 
 
 

Figure 6: A compound loop detector and probe vehicle AID (Source: [2]) 
 
 
The two stages of the algorithms [88] in Figure 6 are as follows:  

1. a trigger stage which suggests the occurrence of an incident,  
2. a verification stage that automatically verifies the  occurrence.  

The probabilities of the incident’s occurrence from each algorithm are combined using a weight 
averaging fusion method in order to reach a final classification decision in the verification stage. 



 

 

The weight of each component is determined by the number of verification steps that were 
executed. Dub-STAR [89] merges the traditional data sources, like loop detectors and traffic 
cameras, with social media and SMS messages in order to provide insights into real-time traffic 
conditions and incidents. 
 

 

10. Conclusions 
 
 

 Minimizing the boundary of the possible-region containing the incident before executing 
the detection algorithm could reduce performance-time and may increase accuracy. It 
could also reduce false alarms. Optimization heuristics can be used for this purpose [48] 
[68]. 

 In probe vehicles, it is not recommended to use the statistical-difference between mean 
travel-times of multiple probe vehicles, and act when the mean travel-time crosses some 
defined threshold. This technique requires a large penetration rate for good results (i.e. > 
50% probes) [3] [58] [59]. However, the required penetration rate may be reduced by 
using optimization heuristics. 

 Spatio-Temporal analysis, i.e. considering Space and Time dimensions, could lower 
False Alarm Rates (FAR) in AID algorithms [32] [52] [62] [64] [69]. 

 For anomaly detection, model a stable state for the road’s traffic before detecting 
anomalies against that stable state [63]. 

 Use Ant Colony algorithm, or other meta-heuristic optimizations to enhance the 
performance of a Machine Learning approach [7] [48]. 

 Fuzzy Logic along with Machine Learning techniques can minimize error due to 
uncertainty in data-points. [13] [48] 

 Selection of the Machine Learning model’s parameters should be prioritized as one of 
the critical steps in the design of the solution [7] [13] [16] [61]. 

 Support Vector Machine (SVM) can produce non-linear classifiers with high-
dimensionality. However, SVM requires careful selection of parameters [7] [61]. 

 Unsupervised learning is valuable in detecting events that have no concrete definitions, 
such as arterial operation problems [41] [47], congestion and secondary incidents [48] 
[62], etc. 

 No fusion method always performs better than the other. Instead, each fusion method 
excels with data from a particular set of sensor types. 
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