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EXECUTIVE SUMMARY 

Accurate turning movement counts at intersections are important for transportation engineers or 

planners to conduct different types of traffic and transportation studies, including transportation 

planning, geometric design, level of service analysis, capacity analysis, signal timing calculations, 

and traffic signal coordination. The traditional method to obtain the vehicle volumes at 

intersections is based on manual counts by observers, which is useful but requires extensive labor 

and can involve human errors from the observers. Recently, advanced traffic sensors such as 

camera detectors are available to continuously provide detailed and accurate vehicle turning 

movements. However, it is very expensive to fully instrument every intersection with the sensors. 

According to a previous study (Zhu et al., 2014), the traffic patterns of the adjacent intersections 

should be highly correlated. Hence, it should be feasible and cost-effective to install traffic 

sensors at several intersections to detect the turning movements and develop algorithms to 

estimate the turning movements at the adjacent intersections.  

This research aimed to develop algorithms to estimate turning movements at signalized 

intersections using traffic data from adjacent intersections. Aiming to achieve this objective, 

previous studies were reviewed to conclude the most efficient methodological approaches to 

predict/estimate traffic parameters. It also illustrates the utilized data in literature to develop 

parametric and non-parametric (machine learning models) as well as the performance measures 

that were commonly used to evaluate the developed models. The traffic movements and signal 

data from the GRIDSMART system were utilized to develop different turning movement 

estimation algorithms (generic, corridor, and individual groups models). Moreover, sequence of 

intersections was determined considering several factors: correlation, coefficient of variation, 

distance between intersections, number of access points/stop-controlled intersection between two 
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consecutive intersections, and data availability. As a result, a total of 19 intersections were 

divided into four groups on US 17/92 and seven groups on US 441. The collected data was divided 

into two parts: one is to develop algorithms and the other is to validate the developed algorithms. 

Different approaches that were widely employed in previous short-term traffic forecasting studies 

(parametric models, machine learning models, and deep learning models) were followed to 

develop a comprehensive turning movement estimation model. Six models were applied, tuned, 

and tested: negative binomial model, finite mixture model, multivariate adaptive regression spline, 

neural networks, random forest, and gradient boosting. The models were developed to estimate 

corridor-level (North-South direction) through movements. They were trained to estimate one 

traffic movement at a time. Three performance measures were utilized to evaluate the developed 

models: Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute 

Percentage Error (MAPE). An extensive comparison was carried out to determine the best 

methodological approach to estimate turning movement estimation algorithms for individual 

groups, each corridor, and for the whole study area. The Gradient Boosting Decision Tree (GBDT) 

model was chosen to estimate turning movements as it outperformed other parametric and 

nonparametric algorithms. Thus, totally 56 models were trained and tested using the GBDT model. 

The results show that implementing a specific estimation algorithm for a certain group improves 

the performance measures. Moreover, for the developed generic models using all day data, MAPE 

values of AM and PM peak periods were higher than off-peak and night-time periods for both 

through and left-turn movement models. Hence, specific models were developed using refined 

subsets of data for peak periods only. The groups average MAPE was 7% for through movement 

models and 2% for left turn movement models. Besides, the performance measures for all the 

developed models outperformed the models in the most recent literature. 
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The study concludes that the developed Turning Movement Estimation (TMC) algorithms 

could emulate GRIDSMART at most intersections. To achieve the best performance, it was 

recommended to apply the developed algorithms at six intersections (two at US 17/92 and four at 

US 441) while the GRIDSMART system could be used to detect movements at the rest 

intersections and provide the required data for the algorithms. Moreover, it was recommended to 

use peak period models to estimate through and left-turn movement at the AM and PM peaks and 

the generic model could be used for other time periods. The right-turn movements were not 

estimated in this study since it is not controlled by the signal timing. Both models for individual 

intersection group and all groups were developed. The two types of models could provide the 

state-of-the-art accuracy compared to the previous studies. While the models for individual 

intersection group could provide more accurate estimation results, it is less convenient to program 

models for each intersection. Hence, the adoption of the models should depend on the 

practitioners’ needs.  

Afterwards, Miovision TrafficLink data was analyzed and validated by comparing it to 

the ATSPM data. One-minute aggregated turning movement data was utilized in validating 

Miovision system using ATSPM data. Hence, ATSPM data at upstream (advanced) and stop-line 

detectors was downloaded and aggregated in one-minute increments for the same time period. 

The ATSPM data at the advanced and stop line detectors were compared. It shows that the stop-

line detectors could detect over 10% less vehicles for most cases, compared to the advanced 

detectors. Finally, the results illustrated that Miovision detected at least 9.06% less through 

volume than the ATSPM data. However, for left-turn volume, Miovision could help identify more 

vehicles in most cases.   
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CHAPTER 1. INTRODUCTION 

As the rapid advancement of technology is changing the way we travel, Intelligent 

Transportation Systems (ITS) technologies are becoming vital in enhancing traffic network 

management (Chen & Muller, 2001), which could provide various traffic information to users 

about real-time traffic conditions (e.g., traffic flow and travel time). The information provided 

to users through ITS technologies should represent future traffic conditions. Moreover, it 

should be updated in real-time to guarantee the reliability and efficiency of the traffic system. 

Short-term traffic estimation has been widely employed in ITS applications to feed the system 

with the required traffic information. 

In general, accurate turning movement counts at intersections are important for 

transportation engineers or planners to conduct different types of traffic and transportation 

studies, including transportation planning, geometric design, level of service analysis, capacity 

analysis, signal timing calculations, and traffic signal coordination. Thus, the main objective 

of this project is to develop an intersection turning movement estimation algorithm(s) to help 

expand the turning movement data coverage. Traffic detectors could be deployed at some 

intersections and then several short-term traffic estimation approaches could be employed to 

calculate the required traffic information of the other intersections without detectors. This will 

help decrease the expensive cost of collecting traffic information at signalized intersections by 

using sensors. The basic idea is to estimate turning movements at one intersection using real-

time data from adjacent intersections. Hence, the estimated turning movements could emulate 

real-time counts from traffic movement detectors. This study is the first attempt to estimate 

cycle-level aggregated through and left turn movements for major roads at signalized 

intersections. 

In this project, two types of movement detection systems were investigated: 
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GRIDSMART in Orange county and MioVison in Seminole county. The GRIDSMART 

detectors were installed on two major corridors (US 441 and US 17/92), which provides 

detailed information of each vehicle at intersections and signal timing. The MioVison 

detectors were installed several intersections, providing turning vehicle counts by a minute. 

The Automated Traffic Signal Performance Measures (ATSPM) data were also available at 

the intersections where the Miovison detectors were installed. Given the available detectors, 

the main objectives of this project are summarized as follows: 

1. Review the traffic flow/movement prediction/estimation methods 

2. Develop movement estimation algorithms for GRIDSMART considering the 

sequence of intersections and estimation algorithms 

3. Compare the Miovison data with ATSPM for different movements at intersections 

This report is organized as follow: the second chapter illustrates the literature review. 

It includes different input data sources and time intervals for training and testing different 

forecasting approaches, the methodological framework for predicting/estimating short-term 

traffic parameters, and different accuracy evaluation measures. Chapter 3 focuses on the 

GRIDSMART system, which included GRIDSMART data collection, preparation, and 

validation. It comprised the methodologies and the developed turning movement estimation 

models. At the end of the chapter, the results were illustrated and summarized to conclude the 

best developed models based on different calculated performance measures. It also listed at 

which intersections the developed algorithm(s) could emulate the detectors systems based on 

the model performance. Chapter 4 summarized data from the Miovision system. The Miovision 

data were validated and compared based on the ATSPM data. The performance of movement 

data from Miovison was investigated extensively. The last chapter concludes summary of data 

collection, data validation and the estimation models that were developed for intersections with 
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the GRIDSMART and Miovision systems. Based on the models’ performance, the 

corresponding application suggestions were provided.  
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CHAPTER 2. LITERATURE REVIEW 

For predicting/estimating short-term traffic parameters (e.g., traffic flow, speed, and travel 

time), several methodologies were addressed in previous research. Research studies were 

mostly based on two modelling approaches: parametric and nonparametric models. In addition, 

some simulation models were also utilized to forecast short-term traffic parameters. The 

selection of the most appropriate methodology in estimating traffic parameters is important. 

Generally, both parametric and nonparametric approaches have been widely employed in 

previous short-term traffic forecasting studies. The parametric models could be divided into 

statistical parametric techniques (such as time-series models) and state space models (Qiao et 

al., 2013). Further, the nonparametric models comprise regression techniques and neural 

networks’ approaches (Vlahogianni et al., 2004). Moreover, some simulation models have also 

been used in the short-term traffic estimation. A comprehensive literature review was 

conducted. According to the tasks in the project scope, the literature review covers the 

following concepts:  

 Data sources for traffic volume estimation.  

 Different methodological approaches that been adopted to predict/estimate 

traffic parameters.  

 Different accuracy evaluation measures 

2.1 Data Source for Traffic Volume Estimation 

To estimate the short-term traffic, various input data are needed. Many input traffic data 

sources were utilized in previous traffic forecasting research, including loop detectors, Global 

Positioning System (GPS) trajectory data, etc. Among them, the most commonly used data 

source is loop detectors.  Table 1 shows the summary of data sources utilized in previous 

research.
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Table 1: Summary of data sources 

Data 
Source 

Dependent Variables Independent Variables Spatial Relationship Temporal Study Facility Type 

Loop 
Detectors 

Traffic volume and travel speed 
Traffic volume and travel 

speed 
Adjacent roads upstream 

the target road 
Data aggregated by 5-min / 
forecasting 5 minutes ahead 

(Chang et al., 
2000) 

Urban 
Network 

Traffic volume, day of week Traffic volume No 
Data aggregated by 10-min/ 
forecasting 24 hrs ahead and 

horizons smaller than 80 minutes 

(Thomas et al., 
2010) 

Urban 
Network 

Traffic volume Traffic volume No 
Data aggregated by 5-min / 
forecasting 5 minutes ahead 

(Yoon and Chang, 
2014) 

Urban 
Network 

Link volume; time of day; day 
of week; weekend or not 

Traffic volume No 
Data aggregated by 5-min / 
forecasting 5 minutes ahead 

(Mackenzie et al., 
2018) 

Urban 
Network 

Traffic flow Traffic volume No Data aggregated by 15-min 
(Williams and 
Hoel, 2003) 

Freeways 

Traffic flow Traffic volume No Data aggregated by 15-min 
(Ghosh et al., 
2007, 2005) 

Urban 
Network 

Traffic volume and occupancy 
(normal condition and abnormal 

events) 
Traffic volume No Data aggregated by 15-min (Guo et al., 2013) 

Urban 
Network 

Traffic flow and travel time 
(normal condition and abnormal 

events) 
Traffic volume No 

Data aggregated by 5-min and 15-
min 

(Guo et al., 2018) 
Urban 

Network 

One-intersection model: 
(current volume); 

Three-intersection model: 
(current, upstream, and 
downstream volumes) 

Traffic volume 
Upstream and 

downstream intersection 
Data aggregated by 15-min (Zhu et al., 2014) 

Urban 
Network 
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Data 
Source 

Dependent Variables Independent Variables Spatial Relationship Temporal Study Facility Type 

Traffic volume Traffic volume No Data aggregated by 15-min (Zhan et al., 2018) 
Suburban 
Network 

45 minutes (30 steps) volume; 
normal days or holiday; time of 

day 
Traffic volume 

Multivariate (multiple 
locations) 

Data aggregated by 90-sec 
(Zheng and Su, 

2014) 
Urban 

Network 

Univariate (current volume 
data); Multivariate (current 

volume and upstream volume 
data) 

Traffic volume 
Current and upstream 

intersection 
Data aggregated by 3-min/ 

forecasting 15 minutes ahead 
(Vlahogianni et 

al., 2005) 
Urban 

Network 

Multivariate (current volume 
and upstream volume data) 

Traffic volume 
Current and upstream 

loop detectors 
Data aggregated by 3-min 

(Stathopoulos and 
Karlaftis, 2003) 

Urban 
Network 

Traffic Volume Traffic Volume 

Upstream detectors 
(weight matrix for first-
order, second-order, and 

third-order) 

Data aggregated by 90-sec 
(Kamarianakis 
and Prastacos, 

2005) 

Urban 
Network 

Observed 
Vehicle 
Counts 

Traffic volume 
Traffic volume and turning 

volume 
Road network Not defined 

(Chen and Chen, 
2011) 

Urban 
Network 

Inbound and outbound traffic 
volume 

Turning movements No 
Data aggregated by one hour/ 

forecasting one hour ahead 
(Ghanim and 

Shaaban, 2018) 
Suburban 
Network 

Taxi 
Trajectory 

Data 

Time Domain, upstream road 
segment, downstream road 

segment  
Taxi Volume 

Both upstream and 
downstream segments 

Forecasting 5 minutes ahead (Xia et al., 2016) 
Urban 

Network 

GPS 
Trajectory 

Data  

Vehicle arrival information, 
signal status 

Traffic volume 
Coordinated 
intersections 

Not defined 
(Zheng and Liu, 

2017) 
Urban 

Network 

Bluetooth 
Data 

Bluetooth average travel time Travel time No Data aggregated by 5-min (Qiao et al., 2013) Freeways 
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2.1.1 Loop Detectors Data Sources 

From the previous literature along the past two decades, traffic data from loop detectors were the 

most commonly used in estimating traffic parameters. Data were usually aggregated at 5-min or 

15-min intervals. For example, Chang et al. (2000) collected 1,339 time-series data points in the 

5-minute interval and then fed into combined Autoregressive Integrated Moving Average 

(ARIMA) and Artificial Neural Networks (ANN) models to predict traffic flow and travel speed.  

Moreover, to estimate speed data up to 5-min in the future, Dia (2001) developed an object-

oriented neural network model using data from four inductive loops on a section of the Pacific 

Highway in Queensland, Australia. In addition, 5-min interval vehicle detection data collected by 

inductive loop detectors at about 20 signalized intersections were utilized in the study by Thomas 

et al. (2010). The data measurements were provided in 5-min intervals and then aggregated in 10-

min intervals to be used in their model. Also, Yoon & Chang (2014) utilized traffic volume data 

collected in every 5 minutes from dual loop detectors at a signalized intersection on the south 

Beltway, one of the main Signalized arterials in Seoul, South Korea. Furthermore, Mackenzie et 

al. (2018) used lane-specific traffic count data which were collected from dual-loop  detectors 

every 5 minutes. These data were used to evaluate the performance of different short-term traffic 

flow prediction algorithms. 

Also, many studies adopted 15-min intervals in the data collection for short-term traffic 

forecasting. Williams & Hoel (2003) utilized loop detectors’ data aggregated at 15-min discrete 

time intervals in developing models and forecasting the short-term traffic flow. Ghosh et al. (2005) 

and  Ghosh et al.(2007) obtained 15-min data from loop detectors at 183 junctions in the city center 

of Dublin to predict traffic flow using thee different time series models. Also, Guo et al. (2013) 

utilized 15-min traffic data collected by loop detectors from Central London. In their recent study, 

Guo et al. (2018) collected two kinds of traffic flow data from two major roads in central London 
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using loop detectors, which were aggregated in 5-min and 15-min intervals, respectively. They 

also used link-based 5-min interval travel time data to test their models. Zhu et al. (2014) estimated 

short-term traffic data at intersections in Baotou City of China based on 128 datasets, which were 

collected at 15-min interval from loop detectors. Moreover, Zhan et al. (2018) utilized 14 loop 

detectors to collect data from an arterial in Arcadia, Canada in 2015. The raw data were processed 

into time series flow data that separated by 15-min time interval. Those data were sent to the 

control center every hour to forecast the flow in the next upcoming hour.  

Traffic data from loop detectors were also processed in other time intervals. Zheng & Su 

(2014) utilized data collected every 1.5 minutes from seven loop detectors on a signalized arterial 

near downtown Athens, Greece. While for the same signalized arterial, Vlahogianni et al. (2005) 

developed their models based on 3-minute interval univariate and multivariate data. However, they 

only focused on estimating traffic using a single optimized model, while ignoring the effect of 

time interval. Also, Stathopoulos & Karlaftis (2003) developed their model based on 3-min interval 

detectors data from spatial standpoint at the same location (Alexander Venue).  

2.1.2 Traffic Flow Data Sources 

Kamarianakis & Prastacos (2005) built their model using flow data from 25 loop detectors located 

at   urban streets in the downtown of Athens, Greece. The data were 7.5-min average traffic flow 

data. On another hand, Clark (2003)  aggregated traffic data in 10-min and used them to develop 

a nonparametric regression model. Moreover, Jiang et al. (2005) utilized traffic flow data from 

North Carolina Department of Transportation to validate their model. The utilized time series data 

were lane-specific average hourly traffic flow on Durham freeway in the state of North Carolina. 

Two studies tried to use link volume data to estimate turning movements at intersections. 

Chen et al (2010) developed estimation models using link volume data collected from observed 

vehicle counts at an arterial street connected by a series of signalized intersections. In the arterial 
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network, link flows on all approaches of both major and minor roads are available. The traffic 

counts on links originating from and terminating to the external station are used as observation 

constraints for the developed model. Ghanim & Shaaban (2018) developed an ANN model to 

estimate the hourly turning movement by using link volume which was also collected hourly. The 

data were collected from 847 signalized intersections (including 691 four-leg intersections and 156 

three-leg intersections) in Palm Beach County, Florida. The data collection was conducted during 

AM and PM periods between the years of 2010-2014. All three-leg intersections were treated as 

four-leg intersections, where the in-traffic and out-traffic turning movements of the missing fourth 

leg are set to zero.  

2.1.3 Other Data Sources 

Moreover, other approaches were adopted to collect data that used in developing different 

forecasting models. Xia et al. (2016) used Global Positioning System (GPS) data to obtain real 

time big taxi trajectory data. Further, Zheng & Liu (2017) also used GPS trajectory data from 

Connected Vehicles (CV) or navigation devices to estimate traffic volumes. Finally, Qiao et al., 

(2013) used continuous data that were collected by using Bluetooth devices  to predict real time 

travel time for stochastic freeway applications. Those devices provided Bluetooth average travel 

times every 5 minutes.  

The majority of the previous studies focused on predicting traffic flow at intersection 

approaches, while only few tried to estimate turning movements. To develop estimation models, 

the turning movements of all surrounding intersections were used as dependent variables and other 

data such as link volume were employed as independent variables in the previous studies. In this 

project, the main objective is to develop algorithms to estimate real-time turning movements at 

intersections where no turning movement data are available. The turning movement data of 

adjacent intersection(s) will also be used as input, together with other traffic information (e.g., 
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traffic volume, signal timing, etc.). Noteworthy, this would be the first attempt to include turning 

movement data of adjacent intersections to estimate the turning movements. 

2.2 Methodology 

For short-term traffic parameters prediction/estimation, several methodologies were addressed in 

previous research. Generally, both parametric and nonparametric approaches have been widely 

employed in previous short-term traffic volume (5 minutes to 15 minutes) prediction studies (Qiao 

et al., 2013). The parametric models could be divided into statistical parametric techniques (such 

as time-series models) and state space models (Xie et al., 2007; Qiao et al., 2013). The 

nonparametric models comprise regression techniques and machine learning approaches 

(Vlahogianni et al., 2004). In addition, some simulation models have also been utilized. 

2.2.1 Studies predicting/estimating traffic volume based on parametric models 

Parametric models are divided into statistical parametric techniques (e.g., historical average model 

and time series models) and the state space models (e.g., Kalman Filtering (KF)). The time series 

models include the Autoregressive model (AR), Moving average model (MA), Autoregressive 

Moving Average model (ARMA), Autoregressive Integrated Moving Average (ARIMA) and its 

derivatives. 

Stathopoulos & Karlaftis (2003) developed a multivariate time-series state space model to 

forecast the real-time traffic flow at downstream locations from upstream detector data. The model 

was developed using 3-min traffic count data from detectors located at five locations along a 

signalized arterial (Alexander Avenue) near downtown Athens, Greece. The data were divided 

into two subsets: 70% to calibrate the model, and 30% to test it. The multivariate approach was 

able to model variety of univariate models as well (e.g. ARIMA model). The results showed that 

using multivariate state space model was recommended in the urban roadway system. It also 

showed that ARIMA approach is very helpful to predict real-time traffic flow at entry points of 
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the study area.   

Seasonal Autoregressive Integrated Moving Average (SARIMA) model was developed by  

Williams & Hoel (2003) to predict traffic flow. They estimated short-term traffic parameters at a 

certain location using previous information at the forecast location in the network. Two datasets 

from two different types of highways were utilized, one in United States and another in United 

Kingdom. The SARIMA model achieved a Mean Absolute Percentage Error (MAPE) of 8.9%. 

However, it was recommended to optimize the model’s parameters to improve the MAPE.  

Moreover, Guo et al. (2013) introduced Grey System Model (GM) to reduce the 

dependency on model training. They also used the technique of Singular Spectrum Analysis (SSA) 

in a novel two-stage prediction structure to enhance forecasting accuracy. In their study, the 

accuracies of the estimated traffic parameters for both SSA and non-SSA model structures were 

compared. It was concluded that SSA data smoothing techniques before applying either machine 

learning, or statistical prediction methods could enhance the accuracy of the traffic parameters. 

Moreover, GM and SARIMA prediction models were compared in terms of the accuracy of 

estimated traffic parameters. Traffic flow data from a corridor in Central London were used to 

train and calibrate those models. Traffic parameters were estimated for 15 minutes ahead using 

both GM and SARIMA methods, not only under normal traffic conditions but also in case of 

incidents. The results showed that the accuracy of GM method outperformed SARIMA model 

under both conditions. 

In order to obtain short-term traffic flow, Ghosh et al. (2005) developed and compared 

three different time-series models: random walk model, Holt-Winters’ exponential smoothing 

technique, and SARIMA model. They used the 15-min interval traffic data obtained from loop 

detectors at a four-legged junction at the city center of Dublin to train their models. Three models 

were developed for predicting short-term traffic flow and were evaluated by comparing the Root 
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Mean Square Error (RMSE) and the MAPE. The estimated traffic flow using Holt-Winters’ 

exponential smoothing technique and SARIMA model matched significantly the observed traffic 

flow data during peak hours. However, in case of severe changes in the observed traffic data, the 

models could fail to match significantly the estimated data. Furthermore, using 15-min interval 

traffic flow data that were collected at the same junction (TCS-183) at the city center of Dublin, 

Ghosh et al. (2007) proposed a Bayesian SARIMA time-series model. They used the Markov 

Chain Monte Carlo (MCMC) technique to estimate the distribution of the parameters of the model. 

The model was developed and trained using the traffic flow data collected from inductive loop-

detectors. They concluded that the Bayesian approach in SARIMA model was very beneficial in 

the case of modeling traffic behavior with extreme peaks and fluctuations. 

Another application of time-series models was the Space–Time Autoregressive Integrated 

Moving Average (STARIMA) model developed by Kamarianakis & Prastacos (2005) to forecast 

traffic flow.  A three-stage iterative space-time model was built based on the traffic flow data from 

roads at the city center of Athens, Greece, which were measured every 7.5 minutes by using 25 

loop-detectors. Also, separated ARIMA models were fitted to the datasets, a comparison between 

the average Standard Errors (SE) of the ARIMA models and the RMSE of the SARIMA model 

was conducted. The results showed that the values were quite close. 

Min et al. (2009) proposed a hybrid spatio-temporal method, Dynamic Space-Time 

Autoregressive Integrated Moving Average (Dynamic STARIMA) model, to predict short-term 

traffic flow and enhance traffic prediction accuracy and efficiency.  This model combines both 

STARIMA model and Dynamic Turn Ratio Prediction (DTRP) model, which was trained using 

traffic flow data collected from 50 sensors on the 2nd Ring Road of Beijing, China. They proved 

that the performance of Dynamic STARIMA model was impressive in predicting short-term traffic 

flow with higher accuracy when compared to competitive methods. Moreover, the model 
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demonstrated that it could predict traffic flow very fast for the specified locations on the network. 

However, the proposed Dynamic STARIMA model only showed its efficiency and accuracy on 

urban road network. Thus, it couldn’t be implemented into other transportation systems like 

irregular suburban road network.  In the following year, they introduced a novel approach in the 

ARIMA family, which was the Generalized Space-Time Autoregressive Integrated Moving 

Average (GSTARIMA) model (Min et al., 2010). They compared the proposed GSTARIMA 

model and the traditional STARIMA model using the same traffic flow data that were collected 

from sensors in the 2nd Ring Road of Beijing, China. Their results showed that GSTARIMA 

model’s accuracy was better than the traditional STARIMA model for this urban expressway. 

However, the model needs more time for calculations and the parameter estimation is more 

difficult than that in STARIMA model. Moreover, GSTARIMA model requires more historical 

data to predict traffic parameters.  

A Spatial-Temporal Random Effect (STRE) model was presented by Wu et al. (2016)  with 

less complexity due to mathematical dimension.  In total, 105 detectors in the downtown area of 

the city of Bellevue, Washington were used to collect the data for model development. The data 

were sent to the traffic management center every minute and the data were aggregated into 5 

minutes interval in order to reduce the random noise effect. The STRE model estimated the traffic 

volumes effectively with the MAPE of 16%. The model comparison results indicated that STRE 

model outperformed the ARMA model, the spatiotemporal ARMA model, and Artificial Neural 

Networks (ANN) model.   

Further, Zhu at al. (2016) utilized speed information, while considering spatial and 

temporal dimensions of traffic, to predict short-term traffic counts. Linear Conditional Gaussian 

Bayesian Network (LCG-BN) model was used for their prediction. The performance of the 

developed model was tested and compared with different approaches (i.e., continuous Bayesian 
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Network (BN), ARIMA, and one hidden layer Neural Network (NN)) using a microscopic traffic 

simulation dataset generated by SUMO1 under different time intervals of 5, 10, and 15 minutes. 

The traffic network consisted of 8 external links and 11 internal links. It was concluded that the 

prediction accuracy increased significantly when utilizing speed data along with spatial data.  

State-space models have also been utilized in estimating short-term traffic parameters. The 

most widely used state-space model is the Kalman Filter (KM) model. Chen & Chien (2001) 

carried out dynamic travel time prediction using the KM model. They used probe vehicles’ real-

time reports to develop their models. Their study was on a segment of I-80 corridor in New Jersey 

based on collected travel-time data from probe vehicles. Two prediction approaches were 

addressed in this study: path-based and link-based travel time prediction methods. The study 

proved that under normal flow conditions path-based method outperformed the link-based one. 

Moreover, they also proved that the prediction accuracy could be improved by increasing probe 

vehicles’ penetration rate. On the other hand, Xie et al. (2007) investigated predicting short-term 

traffic volume using the application of Kalman Filter with discrete wavelet analysis (Wavelet 

Kalman Filter prediction model). Traffic flow data were collected from detectors deployed on three 

highways: Interstate 5 (I-5), Interstate 90 (I-90), and Interstate 405 (I-405) in Seattle. The original 

data were denoised by dividing into several approximate and detailed data using discrete wavelet 

decomposition analysis. Thus, the prediction accuracy can be improved when using the Kalman 

Filter model with the prepared denoised data. The results showed that the investigated Wavelet 

Kalman Filter models outperformed the direct Kalman Filter model in terms of MAPE and RMSE. 

Guo et al. (2014) investigated Adaptive Kalman Filter (AKF) model that can update the 

process variances. They used 15-min aggregated traffic flow data that collected from four highway 

 
1 SUMO: is an open source microscopic simulator mainly developed by employees of the Institute of Transportation 
Systems at the German Aerospace Center. 
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systems: the motorway system in the United Kingdom, and the metropolitan freeway systems in 

Maryland, Minnesota, and Washington State of the United States. The AKF model was proved to 

be adaptable in the case of unsteady traffic flow. Moreover, it was concluded that the state-space 

models developed base on the stochastic structure could affect the performance of AKF model. 

Another parametric approach was proposed by Zhan et al. (2018). They developed an 

ensemble Time Decay Error-Correction (TDEC) model based on three core ideas: learn from base 

models’ mistakes that had taken place in the past; balance the diversity and accuracy of the model; 

remove the outliers in traffic forecasts. In order to test the developed model, data were collected 

from arterial sensors in Arcadia, CA in 2015 and processed into 15-mins interval traffic flow time 

series.  The measured traffic flow data were sent to the traffic control center every hour and were 

used for the following hour. The developed ensemble model achieved an improvement of 16.3% 

in mean of absolute error and 17% in standard deviation, which outperformed two ensemble 

prediction schemes based on Ridge Regression and Lasso. Moreover, it produced traffic flow 

predictions that were more robust and accurate than other ensemble models’ predictions. 

For studies that attempted to forecast the turning movements at intersections, Chen et al. 

(2010) developed a model to estimate turning movements counts at intersections by using the 

nonlinear Path Flow Estimator (PFE). The estimations were based on the entry and exit traffic flow 

counts from arterial network. The intersections’ turning movement estimations were tested through 

two case studies. The first case study was at a main arterial that contains eight signalized 

intersections. They were tested to estimate the turning movements from linear traffic network 

considering all travel delay patterns which were identical for all the intersections. The second case 

study was at the St. Helena network in Napa Valley in California that contained 113 links. The 

results showed that the error was acceptable. However, it was concluded that the accuracy of the 

estimated turning movements could increase when more traffic counts and turning movements’ 



16 
 

data are available. 

2.2.2 Studies predicting/estimating traffic volume based on non-parametric (machine 

learning) approaches 

Machine learning nonparametric models were widely used in traffic parameters predictions and 

estimations (e.g., nonparametric regression, Neural Networks (NN) techniques, and the K-Nearest 

Neighbor (KNN) techniques). The first KNN model for traffic volume prediction was developed 

by Davis et al. (1991). They developed their model using freeway data and compared it to a simple 

univariate linear time-series method. The KNN method performed comparably to, but not better 

than, the linear time-series approach. Moreover, it was concluded that larger databases may 

improve the accuracy of the KNN method. 

Clark (2003) adopted the KNN technique (multivariate extension of nonparametric 

regression technique) in traffic estimation. The model was trained using 10-min interval traffic 

data from the London orbital motorway M25. His model didn’t rely on either the formulation of 

the parametric model or assumptions of traffic state, while it only required modest traffic data to 

implement. Moreover, the accuracy was higher than using a naïve method. It was also mentioned 

that using 15-min interval traffic data to train the model could result in lower RMSE and MAPE 

than that using 10-min interval traffic data. 

In the case of estimating short-term travel time using Bluetooth traffic data, Qiao et al. 

(2013) developed four different prediction models (i.e., historical average, ARIMA, Kalman Filter, 

and KNN methods) . The study was carried out on a 1.18-mile freeway segment located on Virginia 

Route I-66 Eastbound. The data were collected using Bluetooth sensors that provided avergae 

travel time of 5-min interval. Morover, they also introduced a modified nonparametric model K-

Nearest Neighbor–Trend Adjustment Model (KNN-T) which included the effects of traffic trends 

in the forecasting model. Their results proved that the KNN and KNN-T models outperformed the 
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parametric models (i.e., historical average, ARIMA, and Kalman Filter), where the MAPE values 

were reduced by 10% for the off-peak periods, and by 20% for the peak periods. Focusing on 

nonparametric techniques only, their results showed that the KNN-T model had 2.5% and 4.8% 

lower MAPEs than that in the KNN model for off-peak and peak periods, respectively. 

Furthermore, as the KNN-T model captured the effects of traffic trends (time-varying trend), it 

could provide more precise forecasted traffic parameters. 

Another example of KNN techniques was adopted by Yoon and Chang (2014). They 

proposed a K-Nearest Neighbor Non-Parametric Regression (KNN-NPR) algorithm to predict 

short term-traffic volume at signalized intersections. The traffic volume data were collected every 

five minutes using dual-loop detectors on a signalized urban arterial located on the South Beltway, 

one of main arterials in Seoul. The model estimated the direction of the future traffic volume 

without a time-delayed response. It superiorly outperformed both Kalman Filter model and 

ARIMA model. 

Furthermore, Zheng & Su (2014) proposed a new two-step algorithm based on K-Nearest 

Neighbor enhanced by Least Square Probabilistic Classification (KNN-LSPC). First, time 

constraints, and local minimal were utilized in choosing the neighbor; to reduce overlapping 

between candidates. Second, KNN-LSPC algorithm was developed for estimating traffic volume 

using data from seven loop detectors on a signalized arterial (Alexander Venue) near downtown 

Athens, Greece. They used traffic data collected by every 1.5 mins and divided them into two 

groups (weekends and weekdays). The research proved that parameters of KNN-LSPC can be 

analytically optimized, which justified the outperformance of the enhanced KNN-model. By 

comparing KNN-LSPC algorithm with the benchmark models (six KNN algorithms and two 

Kalman filter algorithms), the KNN-LSPC model outperformed them in most cases but its 

performance wasn’t surprisingly huge compared with Kalman Filter algorithms. However, it was 
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indicated the data-driven KNN-LSPC algorithm was free of assumptions on data distribution and 

it had higher flexibility and extendibility than the Kalman Filtered algorithms. 

In order to promote the accuracy and efficiency of short-term traffic flow prediction, Xia 

et al. (2016) developed a Spatial-Temporal Weighted K-Nearest Neighbor  (STW-KNN) model. 

They implemented it in a MapReduce framework on a Hadoop platform. STW-KNN was used to 

estimate the traffic volume of the following five minutes. The traffic flow correlation and weight 

were considered in the study. The model was tested by using real-time big taxi trajectory data 

(contain recorded GPS trajectories by 12,000 taxis in a period of 15 days in November 2012) in 

Sanlihe E. Rd. in the city of Beijing. The developed model was compared with Artificial Neural 

Networks (ANNs), conventional KNN, Naïve Bayes (NB), and Random Forest (RF) models. It 

was proved to have significantly higher efficiency and scalability than the other models. Moreover, 

the STW-KNN model outperformed the other models by reducing MAPE value more than 11.59%. 

Specifically, it improved the accuracy to 89.71% with MAPEs between 3.34% and 6% in space 

and time domain. 

To achieve the aim of improving traffic forecasting accuracy, Guo et al. (2018) developed 

a fusion-based framework that based on combined multiple standalone predictors. The framework 

was evaluated using three different strategies: average, weighted, and KNN methods. Those 

methods were applied to three different machine learning methods: NN, Support Vector 

Regression (SVR), and Random Forest (RF). Traffic flow data for 5-min interval that collected 

from inductive loop detectors were used to develop their framework. Data were collected from 

Cromwell Road in the Royal Borough Kensington and Chelsea, and Marylebone Road in the center 

of London, United Kingdom. The fusion model’s accuracy in the cases of disrupted traffic and 

incidents were evaluated. The results indicated that the average and weighted fusion methods were 

more accurate than the individual methods. Moreover, the KNN fusion based method superiorly 
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outperformed when traffic conditions were disruptred. However, calibrating multiple prediction 

models in parallel was required in developing the proposed fusion framework. 

Another commonly used machine learning model in traffic parameters prediction is 

Gradient Boosting Decision Trees (GBDT). For instance, a GBDT method that combines the 

correlation between the search of sliding time windows and feature extension was developed to 

forecast traffic flow at intersections (Xia and Chen, 2017). Furthermore, the GBDT model was 

proposed to predict short-term traffic volume on freeways (Yang et al., 2017). They proved that 

GBDT outperformed the Support Vector Machine (SVM) and Back Propagation Neural Networks 

(BPNN) models. Different studies have utilized the GBDT model to predict different travel time 

horizons (5 min ahead, 10 min ahead, and 15 min ahead). The developed models outperformed 

both SVM and BPNN models. It also improved the prediction accuracy and model interpretability 

(Zhang and Haghani, 2015; Cheng et al., 2019; Li and Bai, 2017; Zhang et al., 2016).  

An alternative approach to estimate short-term traffic is the deep learning nonparametric 

models (e.g., Long Short-Term Memory network). In recent research, deep learning models were 

found to be promising in many research fields due to their ability to capture nonlinearity in models. 

Many other studies adopted neural network models to forecast different traffic parameters. Clark 

et al., (1993) developed the first neural network model based on a basic three-layered back-

propagation Multilayer Perceptron (MLP) model. The model consisted of one input layer, one 

hidden layer, and one output layer.  

Vlahogianni et al., (2005) concentrated on developing a neural network model for 

forecasting short-term traffic volume at signalized intersections on congested urban arterials. The 

model was developed based on error back-propagation feed-forward MLP techniques and genetic 

algorithms by considering both spatial and temporal traffic flow characteristics. In order to test the 

model, univariate and multivariate data from signalized urban arterials were used to evaluate the 
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developed neural network. Data from Alexander Avenue (a major signalized arterial in Athens, 

Greece that connected between two congested arterials) were utilized to train and test the 

developed algorithm. The available data were collected by a 3-minute interval. However, the time 

period was ignored while developing the model, and the focus was on estimating traffic using a 

single optimized model. The results showed that the multivariate data were helpful in the case of 

multiple-step forecasting. Moreover, the results showed that neural networks model performed 

better than the univariate ARIMA and multivariate State-Space models in forecasting short-term 

traffic flow. 

In order to enhance the performance of traffic forecasting, Chang et al. (2000) combined 

an ARIMA model and ANN model. Furthermore, they compared ARIMA and ANN models’ 

performance in forecasting traffic flow. Their results showed that the combined ARIMA and ANN 

model produced more accurate estimated traffic flows than using a single model (ARIMA or 

ANN). However, they also concluded that the ANN model could not always outperform the 

ARIMA model in forecasting traffic flow. 

A novel nonparametric model was developed to estimate traffic flow on freeways by Jiang 

et al. (2005). They presented a dynamic time-delay recurrent Wavelet Neural Network (WNN). 

Average hourly traffic flow data from Durham freeway in North Calorina were used to train and 

validate the model. The authors only had an hourly traffic flow data but they recommended to use 

one-minute data or data aggregated in 2, 5, or 10-min interval in order to carry out an effective 

short-term traffic flow prediction. The results showed that the accuracy of estimated traffic flow 

utilizing WNN was within 10% accuracy, which was considered exceptionally excellent as they 

considered the complication of the forecasting problem. 

Zhu et al. (2014) developed a Radial Basis Function Neural Network (RBFNN), a three-

layered feed-forward neural network, and compared it with the Box-Jenkins model (ARIMA 
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model). To develop the model, 128 datasets with 15-min time interval were utilized. The data were 

split into 125 datasets for developing the model and three datasets for testing its accuracy. The 

study was conducted in Baotou City of China to predict short-term traffic data at intersections 

using traffic data collected by loop detectors. The area consisted of three adjacent intersections 

along Shaoxian Rd. The results showed better accuracy for the RBFNN model. Moreover, they 

concluded that for adjacent intersections, the parameters of speed, density, and traffic volumes 

could affect each other. 

The Back Propagation (BP) and Radial Basis Function Neural Networks (RBF-NN) were 

combined linearly by Zheng at al. (2006). They developed a Bayesian Combined Nerual Network 

(BCNN) model based on 15-min interval traffic flow rates that were collected from Singapore’s 

Ayer Rajah Expressway. Two different datasets were used in the experimental study: one dataset 

to train the single neural network models and the other dataset to evaluate the performance of the 

models and to compare between them. The evaluation and comparison were carried out using 

MAPE, Variance of Absolute Percentage Error (VAPE), and Probabiloty of Percentage Error 

(PPE). The findings of this research showed that the BCNN model outperformed the single neural 

network models (BP and RBF) in predicting traffic flow. 

Rong et al. (2015) compared three prediction models for predicting traffic parameters: 

ARIMA model, BPNN model, and nonparametric regression (KNN) model. Their study was 

executed by collecting traffic volume, speed, and occupancy data by every 5 minutes. These data 

were collected from two sites: Jianguomen and Jimen Bridges in Beijing, China. Absolute Error 

(AE), RMSE, error distribution, and model probability were calculated to evaluate the three 

models. The results showed that in case of gentle time series fluctuation, the three models can give 

the same accuracy. However, the KNN model seemed to be significantly more accurate when time 

series fluctuate dramatically. 
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Dia (2001) aimed to predict speed by five minutes in the future with a high degree of 

accuracy. Thus, he developed an object-oriented Time Lag Recurrent Network (TLRN) to forecast 

traffic speed parameter. Speed and traffic flow data collected by inductive loops on a section of 

the Pacific Highway in Queensland, Australia were utilized to train, validate, and test the 

developed model. He anticipated the Mean Squared Error (MSE) as measure of effectiveness to 

test and compare different neural network models: MLP, Hybrid, Recurrent and TLRN. The results 

showed that the dynamic neural networks outperformed MLP. Also, he concluded that those neural 

networks can predict speed for the upcoming 5 minutes with the accuracy between 90 and 94%. 

However, they could also be used to predict travel time up to the following 15 minutes with the 

accuracy of 93-95%, which could be considered as high degree of accuracy. 

Recently, Long Short-Term Memory models were commonly used in predicting traffic 

parameters. For instance, Zhao et al., (2017) utilized LSTM for traffic volume forecast concluded 

that LSTM is robust in predicting traffic parameters (e.g., traffic volume, travel time, traffic speed 

and occupancy). They integrated a designed Origin-Destination Correlation (ODC) matrix with 

LSTM. Moreover, Liu et al. (2017) developed Singular Point Probability LSTM (SPP-LSTM) 

model that was integrated with ARIMA model to predict high accuracy and stability long-term 

traffic flow. Li and Ban (2019) also developed a Convolutional Neural Network LSTM (CNN-

LSTM) model to predict real-time traffic volume at signalized intersections. Traffic volumes were 

considered as an input to the CNN by transferring them into a 2D image, then LSTM was trained 

using the output of the CNN. On another study, Dia (2001) aimed to predict speed by five minutes 

in the future with a high degree of accuracy. Thus, he developed an object-oriented Time Lag 

Recurrent Netwrok (TLRN) to forecast traffic speed parameter. Speed and traffic flow data 

collected by inductive loops on a section of the Pacific Highway in Queensland, Australia were 

utilized to train, validate, and test the developed model. He anticipated the MSE as measure of 
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effictivness to test and compare different neural network models: MLP, Hybrid, Recurrent and 

TLRN. The results showed that the dynamic neural networks outperformed MLP. Also, he 

concluded that those neural networks can predict speed for the upcoming 5 minutes with the 

accuracy between 90 and 94%. However, they could also be used to predict travel time up to the 

following 15 minutes with the accuracy of 93-95%, which could be considered as high degree of 

accuracy. Finally, Hierarchical Temporal Memory (HTM) was proposed by Mackenzie et al. 

(2018) to invistigate and evaluate it over real-world Sydney Coordinated Adaptive traffic system 

data. They used time series data that contained a timestamp and traffic data counts per lane. The 

data were collected from two sperated links, i.e., one was along a corridor and the other was at an 

intersection. The results of HTM were compared to the Long Short-Term Memory (LSTM) 

method. The results showed that HTM outperformed LTSM in terms of MAPE, RMSE, and Mean 

GEH2. 

2.2.3 Studies predicting/estimating turning movements  

In the literature, limited studies attempted to estimate/predict turning movements at signalized 

intersections, with the availability of total entering and exiting volumes at all approaches. For 

instance, Chen et al. (2012) developed a model to estimate turning movement counts at 

intersections by using a nonlinear Path Flow Estimator (PFE). They utilized grouped inbound and 

outbound peak hour volumes as an input in their model to derive the vehicles’ path and calculate 

the turning movements’ volumes. In addition, they assumed a constraint that the estimated volume 

cannot exceed the capacity of the approach. Their results showed that the error was acceptable for 

main corridors, but not good for minor ones. They concluded that the accuracy of the estimated 

turning movements could increase when more traffic counts and turning movements’ data are 

 
2 GEH: a statistic commonly used to evaluate predictive traffic models, named after its creator, Geoffrey E. Havers. 
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available.  

Another study aimed to estimate a reliable hourly turning movement estimation model  

using machine learning (Ghanim and Shaaban, 2018). An Artificial Neural Network (ANN) model 

was developed to estimate turning movements at a high level of accuracy using only approach 

volumes as an input. The model was trained to analyze the relationship between the approach 

volumes and the corresponding turning movements. Their results showed that the estimated 

through movements is close in different traditional estimation approaches. However, the right and 

left turn movements estimations were significantly better when using ANN model. Their 

developed model was limited to peak hours.  

Finally, a latest study aimed to develop short-term prediction algorithm of movements at 

intersections based on the Partial Least Square model (PLS) (Li et al., 2020). Trajectory data was 

utilized in developing their prediction model. This data represents traffic conditions by providing 

different features (number of sampled trajectories, number of stops, and average speed) per 15 

minutes. Their performance measures of Root Mean Squared Error (RMSE) and Mean Absolute 

Percentage Error (MAPE) were 8.34 and 16.68%, respectively. The developed PLS algorithm was 

compared to different prediction models (i.e., ARIMA, K-NN and Support Vector Regression) and 

outperformed them. All these studies estimate/predict the movements in 15 minutes or one hour. 

To our best knowledge, no study attempted to estimate movement counts at intersections at the 

cycle level.  

Past research focused on predicting traffic volume at intersections and freeways. Limited 

studies have been conducted to estimate/predict turning movement counts at signalized 

intersections. Table 2 summarizes the different methodologies that were adopted in the literature 

to estimate/predict traffic parameters, the estimation/prediction duration, and the achieved 

accuracy. To the best of the authors’ knowledge, no one attempt to estimate short-term turning 
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movement counts at signalized intersections at the cycle level. Hence, this research aims to extend 

past research and bridge the gap, as previous studies focused on estimating 15 minutes or one-hour 

traffic movements at signalized intersections with the total entering and exiting movements 

considered as inputs in the developed models. 
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Table 2: Summary of the adopted estimation/prediction methodologies in literature 
Reference Objective Method Time Interval Performance Measures 

Chen et al. (2012) Predicting turning movements at urban signalized intersections Path Flow Estimator One hour RMSE = 28.89 
Ghanim and Shaaban 

(2018) 
Predicting turning movements at urban signalized intersections 

Artificial Neural Network One hour RMSPE = 4.7% 

Li et al., (2020) Predicting turning movements at urban signalized intersections Partial Least Square Model 15-min 
RMSE = 8.34 

MAPE = 16.68% 
Stathopoulos and 
Karlaftis, (2003) 

Predict traffic volume at urban arterials 
Multivariate Time-Series State 

Space Model 
15-min MAPE = 15% 

Williams and Hoel, 
(2003) 

Predict short term traffic flow at fixed locations on freeways Seasonal ARIMA Model 15-min MAPE = 8.6% 

Ghosh et al., (2005) 
Predict traffic volume at urban signalized intersections  

Seasonal ARIMA Model 15-min 
RMSE = 42.89 
MAPE = 28.5% 

Ghosh et al., (2007) 
Predict traffic volume at urban signalized intersections  Seasonal ARIMA With Bayesian 

Inference Model 
15-min APE = 5.4% 

Kamarianakis and 
Prastacos, (2005) 

Predict traffic volume at urban signalized intersections  
STARIMA Model 7.5-min RMSE = 42.11 

Min et al., (2009) Predict traffic volume at urban signalized intersections  Dynamic STARIMA Model 5-min MRE = 9.49% 
Min et al., (2010) Predict traffic volume at urban signalized intersections  GSTARIMA model 15-min MRE = 11.49% 

Clark, (2003) Predict traffic volume along a motorway network K-Nearest Neighbor 10-min 
RMSE = 6.6 

MAPE = 10.4% 

Guo et al., (2018) Predict traffic volume at fixed locations on urban corridors KNN Fusion Based Model 
5-min 

15-min 

MAPE = 6.28% (normal 
conditions 5-min) 

MAPE = 19.4% (incident 
period 15-min) 

Xia et al., (2016) Predict traffic volume at urban signalized intersections Spatial-Temporal Weighted KNN 5-min MAPE = 28.56% 
Yoon and Chang, (2014) Predict traffic volume at urban signalized intersections KNN-Nonparametric Regression 5-min MAPE = 12.84% 

Zheng and Su, (2014) Predict traffic volume at urban signalized intersections  KNN-LSPC 1.5-min MAPE = 11.31% 
Qiao et al., (2013) Predict travel time on freeways KNN-Trend 5-min MAPE = 9.74% 

Xia and Chen, (2017) Predict traffic volume at urban signalized intersections  GBDT 10-min MAPE = 9.74% 
Yang et al., (2017) Predict traffic volume at fixed locations on freeways GBDT 5-min MAPE = 7.4% 

Zhang and Haghani, 
(2015) 

Predict traffic volume at fixed locations on freeways GBDT 5-min 
MAPE = 2.9% (non-peak) 

MAPE = 9.9% (peak) 

Cheng et al., (2019) Predict travel time at fixed locations on freeways GBDT 
5-min 

10-min 
15-min 

MAPE = 2.45% (5-min) 
MAPE = 3.94% (10-min) 
MAPE = 4.66% (15-min) 

Zhang et al., (2016) Predict travel time on congested urban road networks GBDT 30-min MAPE = 9.6% 

Jiang et al., (2005) Predict traffic volume at fixed locations on freeways 
Dynamic Wavelet Neural 

Network Model 
One hour Absolute error = 9% 

Zheng et al., (2006) Predict traffic volume at fixed locations on freeways 
Bayesian Combined Neural 

Network model 
15-min MAPE = 6.10% 

Zhu et al., (2014) Predict traffic volume at urban signalized intersections Artificial Neural Network 15-min MAPE = 13.58% 
Zhao et al., (2017) Predict traffic volume at fixed locations on freeways LSTM 15-min MRE = 6.21 
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2.2.4 Simulation Models  

Using simulation models to predict traffic parameters was adopted by some researchers. For 

example,  Head (1995) estimated a model to estimate traffic flows. The estimated model was used 

in developing proactive real-time traffic-adaptive signal control logic and traffic flow theory. A 

simulation model was built using the TRAF-NETSIM traffic simulation model to demonstrate the 

prediction model. The prediction model was implemented to develop real-time traffic-adaptive 

signal control logic (hierarchical-distributed logic called RHODES) as a part of research. The 

model was implemented to predict data at one intersection, based on a traffic data given by 

detectors upstream this intersection. Moreover, the model was tested using Durbin-Watson (D-W) 

statistic measures. The research concluded that communications between adjacent intersections 

were required to share information about detectors and signal timings, and a better right and left 

turn permitted movements should be included in the model. Also, Lin et al. (2008) established a 

model that can simulate the traffic movement in the urban traffic network, and forecast the traffic 

flow states. He used microscopic model CORSIM (which was exploited by the Federal Highway 

Administration) as the practical traffic system. The model can simulate the current traffic 

movements in an urban network. Moreover, it can predict the future traffic flow states. In their 

research, they utilized the macroscopic Urban Traffic Network (UTN) model to forecast 5 minutes 

traffic flow using CORSIM. Their results proved that the model could compute the traffic status 

of the UTN accurately. However, the suggested method had too many parameters to be fixed and 

it heavily relied on the precision of detectors. Another example for using macroscopic UTN model 

and CORSIM simulation to predict short-term traffic flow was carried out by Kong et al. (2013). 

Their experiment verified the superior performance of the proposed prediction model.  

 To specify, parametric models are easy to implement and understand. Also, the models 

could be able to deal with spatial effects with other intersections and multivariate observations. 
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Non-parametric models are totally data-driven and thus free of assumptions on data distribution. 

While the models especially deep learning models could provide accurate estimation results, the 

model structures are complex. The models established based on the simulation could provide 

reasonable results and could be extended to develop signal control plans. However, the simulation 

needs to be calibrated for a specific network. Hence, it is required to calibrate the network 

including the target intersections first. As in this project we plan to estimate the turning movements 

at intersections, both parametric and non-parametric models will be considered. If possible, a 

hybrid model will be developed to incorporate the advantages of the two approaches. In addition, 

intersections are located on several arterials. For some intersections lack of sufficient observed 

turning movement data, the simulation method will be attempted to validate the developed model 

if necessary.  

 shows the summary of traffic volume prediction methodologies in the literature. To 

specify, parametric models are easy to implement and understand. Also, the models could be able 

to deal with spatial effects with other intersections and multivariate observations. Non-parametric 

models are totally data-driven and thus free of assumptions on data distribution. While the models 

especially deep learning models could provide accurate estimation results, the model structures are 

complex. The models established based on the simulation could provide reasonable results and 

could be extended to develop signal control plans. However, the simulation needs to be calibrated 

for a specific network. Hence, it is required to calibrate the network including the target 

intersections first. As in this project we plan to estimate the turning movements at intersections, 

both parametric and non-parametric models will be considered. If possible, a hybrid model will be 

developed to incorporate the advantages of the two approaches. In addition, intersections are 

located on several arterials. For some intersections lack of sufficient observed turning movement 

data, the simulation method will be attempted to validate the developed model if necessary.  
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2.3 Accuracy evaluation 

In various research that aimed to predict different traffic flow parameters, many measures of 

effectiveness were utilized to evaluate and test different proposed models. The most commonly 

used accuracy measures are Mean Absolute Error (MAE), RMSE, and MAPE. To compare the 

prediction models for a single data set, MAE and RMSE are frequently used. However, MAPE is 

commonly used in case of comparing the performance of prediction models for two different data 

sets (Hyndman, 2010). Moreover, Hyndman & Koehler (2006) proposed another alternative for 

scaled percentage errors to evaluate prediction accuracy  Nevertheless, many other measures of 

effectiveness have been used to evaluate and compare different models in previous literature such 

as: 

 Absolute Percentage Error (APE) 

 Mean Squared Error (MSE)  

 Mean Percentage Error (MPE) 

 Mean Absolute Relative Error (MARE)  

 Mean Relative Percent Error (MRPE)  

 Mean Absolute Deviation (MAD) 

 Variance of Absolute Percentage Error (VAPE) 

 Probability of Percentage Error (PPE) 

 Root Relative-square Error (RRSE) 

 Mean Absolute Scaled Error (MASE) 

The following Table 3 and 4 summarize the measures of effectiveness that were used to 

evaluate different parametric and non-parametric models consecutively. It could be noticed that 

the most common measures are MAE and MAPE. In addition, Head (1995) used MAE while Zhu 

et al. (2016) used MAPE for simulation models. 

Table 3: Summary of the used measure of effectiveness in parametric models 

Model Citation Developed Model Measures of Effectiveness 

Chang et al. (2000) ANN and ARIMA MSE and MAE 
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Parametric 
models 

Williams & Hoel (2003) SARIMA MAPE 

Ghosh et al. (2005) and 
(2007) 

SARIMA APE 

Guo et al. (2013) 
Singular Spectrum Analysis 
(SSA)-Grey System Model 

(GM) 
MPE, MAPE, and RMSE 

Zhan et al. (2018) TDEC Ensemble model MAE 

Stathopoulos & Karlaftis 
(2003) 

State space and ARIMA MAPE 

Stathopoulos & Karlaftis 
(2003) 

State space and ARIMA MAPE 

Kamarianakis & Prastacos 
(2005) 

STARIMA MSE 

Chen et al (2010) PFE RMSE and MSE 
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Table 4: Summary of the used measure of effectiveness in non-parametric models 

Model Citation Developed Model Measures of Effectiveness 

Non-parametric 
models 

Chang et al. (2000)  ANN and ARIMA MSE and MAE 

Yoon & Chang, (2014) KNN MAPE and MAE 

Mackenzie et al, (2018)  LSTM and HTM MAPE and RMSE 

Guo et al. (2018)  
Fusion (average, weighted, 

and KNN) model, (NN, SVR, 
and RF) 

MPE, MAPE and RMSE 

Zhu et al. (2014)   RBF-NN and ARIMA MAD, MAPE and RMSE 

Zheng & Su (2014) KNN-LSPC MAPE  

Vlahogianni et al. (2005) MLPs and genetic algorithm MAE, MSE, and MRPE 
Ghanim & Shaaban (2018) ANN MSE, SE, RMSPE and R2 

Xia et al. (2016) 
Spatial–temporal-weighted-

KNN 
MAPE, RMSE, MSE, and 

MAE 

Qiao et al., (2013) 
Historical average, ARIMA, 
KNN and modified KNN-T 

RMSE, RRSE, MAE, MAPE, 
and MARE 

 

2.4 Summary  

From the literature review, it was shown in many studies that the nonparametric models performed 

better than the parametric models. However, the parametric models also have their characteristics 

that were proven to have superior performance in many cases. The literature illustrated that the 

multivariate data were helpful in case of multiple-steps-ahead forecasting, and the ARIMA 

approach was very helpful in case of entry points of the study area. It was also concluded that the 

Bayesian SARIMA models can improve the modeling of the traffic behavior in reality with rapid 

fluctuations and extreme peaks. Finally, for parametric models, the STRE model outperformed the 

autoregressive moving average (ARMA). Moreover, Random walk model, Holt-Winters’ 

exponential smoothing techniques, and the seasonal ARIMA model failed to match well in cases 

of some abrupt changes in the observed traffic flow data. Further, previous studies verified the 

importance of the interactions between adjacent intersections in case of short-term traffic 

forecasting.  

With respect to nonparametric (machine learning) techniques, previous studies adopted 
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using KNN, NN, GBDT, and LSTM models. Also, many comparisons between parametric and 

nonparametric models were carried out. For the KNN models, both KNN and KNN-T were found 

to have better performance than ARIMA and Kalman Filter. Also, studying the trend effects of 

travel time patterns has the potential to improve the prediction accuracy. Moreover, the KNN 

fusion based method achieved significantly superior results, especially during disrupted traffic 

conditions. However, the method requires calibrating multiple prediction models in parallel. As 

for the KNN-NPR model, it outperformed Kalman Filtering and ARIMA models. Another KNN 

model is the KNN-LSPC, that outperformed KNN and Kalman Filter algorithms. However, KNN-

LSPC is free of assumptions on data distribution and has high flexibility and extendibility more 

than Kalman Filter algorithms. Finally, STW-KNN outperformed ANNs, KNN, NB, and RF. From 

the previous results, it could be concluded that various KNN models are beneficial methods in case 

of short-term traffic flow forecasting. It was indicated that the KNN model outperformed several 

parametric models.  

The other commonly used approach of nonparametric techniques is neural networks 

models. Neural networks models were proven to be efficient in case of forecasting turning 

movements at intersections with high level of accuracy. They outperformed the nonlinear PFE 

method which required more traffic counts and turning movements’ data to increase the prediction 

accuracy. Moreover, for estimating short-term traffic flow, neural networks model performed 

better than the univariate ARIMA and multivariate State-Space models. Previous literature also 

recommended using RBFNN model to calculate traffic flows to increase prediction accuracy. 

While in the case of using LCG-BN, previous studies recommended utilizing speed data instead 

of spatial data to get a significant higher prediction accuracy. Also, it was indicated that the 

Bayesian combined neural network (BCNN) model performed better than Back-Propagation (BP) 

and Radial Basis (RFB) neural network predictors. 
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Gradient Boosting Decision Tree (GBDT) model was adopted in many studies to predict 

traffic parameters (traffic volume and travel time) at urban intersections and freeways. In some 

studies, it was found to have better performance than Support Vector Machine (SVM) and Back 

Propagation Neural Networks (BPNN) models. It also improved the prediction accuracy and model 

interpretability. An alternative approach to estimate short-term traffic is the deep learning 

nonparametric models (e.g., Long Short-Term Memory network). In recent research, deep learning 

models were found to be promising in many research fields due to their ability to capture 

nonlinearity in models.  

As shown in Table 1, the majority of previous studies concentrated on urban networks. The 

prediction accuracy of both parametric and nonparametric prediction models was proved to be 

acceptable on urban networks. In addition to urban networks, there exists a large proportion of 

suburban networks which are more eager for traffic movements prediction with insufficient traffic 

monitoring devices. Also, there exist huge differences between suburban and urban networks in 

terms of road network density, travel patterns, traffic speed, volume, and density.  

In general, past research focused on predicting traffic volume at intersections and freeways. 

Limited studies have been conducted to estimate/predict turning movement counts at signalized 

intersections. To the best of the authors’ knowledge, this study is the first attempt to 

estimate/predict short-term turning movement counts at signalized intersections at the cycle level. 

It extends past research and aims to bridge the gap, as previous studies focused on estimating 15 

minutes or one-hour traffic movements at signalized intersections with the total entering and 

exiting movements considered as inputs in the developed models. Moreover, in this study, it was 

assumed that the target intersection has no traffic volume data. Thus, implementing 

estimation/prediction algorithms at target intersections to provide traffic volumes will save the 

extensive cost of data collections; as detector systems cost more than $20,000 per intersection. 



34 
 

CHAPTER 3. ANALYSIS OF THE GRIDSMART DATA 

In the previous tasks, an extensive literature review was conducted, concluding different methods, 

data, and performance measures that were previously utilized to estimate different traffic 

parameters at signalized intersections. Moreover, data was collected and explored to determine 

whether it will be utilized in developing the turning movement estimation algorithm(s) or not. As 

a result, two main detectors systems data in the study area were collected: GRIDSMART and 

Miovision systems. This chapter discusses the development of turning movements estimation 

algorithm(s) for the identified intersections using traffic data from adjacent intersections based on 

the GRIDSMART system. The collected data were split into training and test data to develop the 

required turning movement estimation algorithms, and to validate the developed algorithms.  

3.1 Data Collection and Preparation 

Input data are crucial to provide accurate estimation results.  In recent years, with the advancement 

of Big Data, abundant data can be used for the better vehicle movement estimation. Traffic data 

from different locations could provide data such as volume, travel time, and speed. Among the 

traffic data, traffic volume data is the basic data source for vehicle counts estimation. Several 

studies tried to incorporate signal status data with traffic volume data to better in estimating vehicle 

counts (Kong et al., 2013; Zheng and Liu, 2017). GRIDSMART is one of the detectors systems 

that could provide detailed volume data considering different turning movements (i.e., though, 

right-turn, left-turn, and U-turn movements) as well as signal timing data. 

GRIDSMART is a single-camera system that gathers traffic data. GRIDSMART 

empowers traffic engineers to adjust signal timing and traffic flow strategies and enables real-time 

monitoring and visual assessment. Automated video data analysis is used by GRIDSMART 

cameras to identify vehicles crossing through user-defined regions at intersections. Processing the 
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resulting data could generate volumes per approach and turning movement counts. The system 

contains a fisheye camera mounted high above the respective location to gather data. It could 

provide a full intersection view, including the center where cars and trucks. The horizon to horizon 

approach offers highly accurate turn counts, views and functionality from the center of the 

intersection. This section will define the study area, the different groups of intersections, and data 

processing and aggregation for algorithms development. 

3.1.1 Study area and data collection 

The GRIDSMART data were collected along three main corridors on Orange county, Florida: 

Orange Blossom Trail (US 441), Mills Avenue (US 17/92), and Colonial Dr. (SR 50). Error! 

Reference source not found. Error! Reference source not found. shows an overview to the 

study area where GRIDSMART data was collected. IP addresses for 32 intersections along the 

three corridors were provided through the GRIDSMART software. Twelve intersections are along 

Orange Blossom Trail corridor, one of them is the intersection between the US 441 and SR 50 

corridors. There are 17 intersections along US 17/92, one of them intersects with the SR 50 

corridor. Finally, five intersections are along SR 50, two of which are the intersections with SR 

17/92 and US 441.  
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Figure 1: Locations of intersections 

The data were explored for all months in 2018 and 2019 to check the availability and 

completeness in the GRIDSMART system. The data of January 2019 was chosen as the month 

had the most complete data for US 441 (some data were missing in other months, while some 

cameras were not installed yet, and some intersections were not connected to the GRIDSMART 

system). For US 17/92, data in May 2019 was selected as it was the most complete and consistent 

data for this corridor (on other months some data were missing, some cameras were not installed 

yet, and some intersections weren’t yet connected to GRIDSMART). However, there was no data 

for consecutive intersections on SR 50. Hence, the turning movement algorithms were developed 

for the first two corridors (US 441 and US 17/92). Through the GRIDSMART system, the turning 

movements counts data for the selected dates were downloaded by using the IP addresses.  Further, 
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the real-time videos from GRIDSMART cameras were manually observed for each intersection 

which were used to match the downloaded data with the user-defined lanes. Figure 2 shows 

GRIDSMART system interface. 

 

Figure 2: GRIDSMART system interface 

After checking all the GRIDSMART data the following problems were identified: 

 The intersection between US 441 and South St. can connect to GRIDSMART but we 

cannot view video on the system or download its real-time data. 

 Three intersections cannot connect to GRIDSMART:  

1- The intersection between US 17/92 and SR 50. 

2- The intersection between SR 50 and Magnolia St. 

3- The intersection between US 17/92 and Packwood Avenue. 

 For the Intersection of SR 50 & Westmoreland St., since 23rd of January, there is no counts 

for all turning movements (all counts are zeros). Therefore, it will be excluded from the 

study. 

 For Intersection US 17/92 & Princeton St., the data for the curb Southbound lane is 

classified as left turn movement (the turns are only left) while it is a right turn lane. 

 For Intersection US 441 & Long St., the Northbound data files doesn’t accurately match 
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the video. 

 For Intersection US 441 & Robinson, some data were missing on January 13th. 

Thus, five intersections were excluded from data collection (US 441 & South St., US 17/92 

& SR 50, SR 50 & Magnolia St., US 17/92 & Packwood Avenue, SR 50 & Westmoreland St., 

Only the counts data for 27 intersections were obtained from the GRIDSMART system including 

15 intersections along US 17/92, 11 intersections along Orange Blossom Trail corridor, and 2 

intersections along SR 50 (including the intersection with US 441). The Intersection of SR 50 & 

Orange Avenue will be excluded because it is far from other intersections. Thus, it will not be 

beneficial to be used in developing the algorithm. Therefore, to develop the turning movement 

estimation algorithm(s), 26 intersections’ counts data along two main corridors (i.e., US 17/92 and 

US 441) will be explored to consider which intersections’ data will be utilized.  

Traffic counts data 

The downloaded counts data from GRIDSMART contains 14 variables: Count Version, Site 

Version, Local Timestamp, UTC offset (minutes), Turn, Vehicle Length (ft), Vehicle Speed 

(MPH), Light State, Seconds in Zone, Vehicles Remaining in Zone, Seconds of Light State, 

Seconds since Green, Zone Recent (FFS), and Zone Calibration (FFS). Each file in the downloaded 

counts folder contains several excel files, each represents a lane at the intersection where a virtual 

detector was implemented in the system. Each file represents the data per lane per day. The data 

contains many records, each record represents one vehicle that occupied the intersection at a 

specific lane and approach.  Since files names don’t define their corresponding lane, ten minutes 

videos were recorded for all the intersections in order to match the ground-truth lanes with the 

implemented virtual detectors to the different counts’ files. Hence, the corresponding lane for each 

ID could be identified. Afterwards, data were combined in order to represent the total turning 

movements counts for each single approach (e.g., NB-S, NB-R, NB-L). Note that the ‘S’ in the 
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files represents the through movements in the GRIDSMART system. 

The previously downloaded real-time traffic counts data from GRIDSMART were 

aggregated into one-hour traffic counts in order to determine the peak and off-peak periods. Thus, 

the average hourly total traffic volumes along each corridor were calculated with respect to 

weekdays and weekends. The following Figure 3 and Figure 4 and show the average hourly traffic 

counts of all intersections along US 17/92 and US 441, respectively. The figures show that the 

hourly traffic volume trend was the same for both corridors. Thus, for weekdays, four periods were 

identified. The AM peak period were found to be from 07:00 to 9:00, while the PM peak period is 

from 16:00 to 18:00. The off-peak periods are from 06:00 to 07:00 and from 09:00 to 15:00. 

Finally, the Nighttime is from 18:00 to 06:00. Moreover, the weekends graphs show only one peak 

from 12:00 to 13:00. As weekdays have higher traffic volumes, this study will focus on weekdays. 

 

Figure 3: Average hourly traffic volumes along US 17/92 
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Figure 4: Average hourly traffic volumes along US 441  

Moreover, Figure 5 and Figure 6 show the average hourly traffic volumes for both 

Northbound and Southbound directions for US 17/92 and US 441, respectively. The graphs were 

plotted for the pre-defined time periods (AM peak, PM peak, off-peak, and Nighttime). The graphs 

show the same trend for each time period for a certain corridor, with some changes in the 

Northbound and Southbound volumes according to different time periods. 
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Figure 5: Average hourly traffic counts for Northbound and Southbound directions - US 17/92 
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Figure 6: Average hourly traffic counts for Northbound and Southbound directions – US 441 

The data counts for the two corridors were aggregated into five minutes to calculate the 

Coefficient of Variation (CV), CV is the standard deviation divided by the mean volume. The CV 

could be used to measure the variability of weekdays traffic counts for the four approaches at each 

intersection in both US 17/92 and US 441.  

Figure 7 andFigure 8 show the CVs at the pre-defined time periods for both US 17/92 and 

US 441, respectively. At US 17/92, the coefficient of variation was relatively small in the AM and 

PM peaks for Northbound and Southbound directions compared to the Eastbound and Westbound 

directions. Moreover, for the US 441, there were no big variations in CVs for AM peak, PM peak, 
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and off-peak periods. The CVs for both US 17/92 and US 441 showed different variations for 

different time periods. Thus, this leads to the consideration of developing different turning 

movement estimation algorithm(s) for different time periods in the next task of the project. 

 

Figure 7: Coefficient of Variation at US 17/92 
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Figure 8: Coefficient of Variation at US 441 

The coefficient of variation for both Northbound and Southbound were plotted for different 

intersections along each corridor in Figure 9 and Figure 10, respectively. The CV values indicate 

the stability of the entering vehicles by different movements. The very high CV is associated to 

unstable entering traffic at certain intersections during certain time periods, which might be 

difficult to estimate. For US 17/92, the Coefficients of Variation (CV) were relatively low, 

especially for AM and PM peaks. However, at Nighttime, CVs significantly increased.  Two 

intersections (US 17/92 & Rollins St. and US 17/92 & Orange Avenue) had large CV values during 

nighttime. Also, the CVs between US 17/92 intersections with Marks St. and Lake Highland St. 
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was relatively high at the same period (Nighttime period). At the US 441, the CVs gave the same 

trend as in the Mills corridor. The values for both AM and PM peaks were relatively low. However, 

the CVs increased in the off-peak period slightly. Then, the CVs significantly increased at 

Nighttime. Moreover, the CV values of Intersections US 441 Gore and US 441 & Church were 

high at Nighttime.  

 

Figure 9: Coefficient of Variation for Northbound and Southbound at US 17/92 
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Figure 10: Coefficient of Variation for Northbound and Southbound at US 441 

Signal data 

The signal data were downloaded from the GRIDSMART system along with the traffic counts 

data. The events files contain timestamps, codes, and data for certain system events such as reboot, 

publish, flash, and phase changes. Error! Reference source not found. shows the GRIDSMART 

interface with the signal state of different phases. By exploring the cycle time for each intersection, 

the cycle times were found to vary for the same intersection. Thus, intersections’ traffic signals 

along the two corridors were found to be fully actuated. However, one problem was detected while 

investigating downloaded events files from the GRIDSMART system. Two intersections which 
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are Intersections US 441 & Carter St. and Intersection US 441 & Long St. are controlled from the 

same cabinet. Thus, the downloaded data files from GRIDSMART are from the same directory. 

However, only one events file for signal data is downloaded and it’s not defined to which 

intersection it belongs to. Hence, these two intersections could not be used in this report. 

 

Figure 11: GRIDSMART signal state for different phases 

Finally, all intersections with missing or corruption of data, low correlation, high 

coefficient of variations, large segment’s distance between intersections, or large number of access 

points/minor roads intersections were excluded. Finally, the data for 11 intersections on US 441 

corridor and 8 intersections on US 17/92 were downloaded. Figure 12 shows the final intersections 

to be utilized in developing turning movements estimation algorithms on both corridors. 

Furthermore, the number of through and left turn lanes for each intersection is shown in  
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Table 5. This shows the difference in geometric characteristics that might affect the 

estimation accuracy.  

 
Figure 12: Intersections with consistent and complete data on GRIDSMART 
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Table 5: Number of through and left turn lanes for each intersection 

Mills Avenue US 17/92 
Intersection Northbound Southbound Eastbound Westbound 
Movement Through Left Through Left Through Left Through Left 

Rollins 2 1 2 1 1 1 1 1 
Princeton 2 2 2 -- -- 1 -- -- 
Nebraska 2 1 2 1 1 1 1 1 
Virginia 2 1 2 2 1 1 1 1 

Lk. Highland 2 1 2 1 ** ** 

Webster 2 1 2 * 1 1 1 1 

Gay 2 1 2 1 1 1 1 1 
Morse 2 1 2 1 2 2 2 2 

OBT Corridor US 441 

Intersection Northbound Southbound Eastbound Westbound 
Movement Through Left Through Left Through Left Through Left 

Colonial Dr. 2 1 2 1 2 1 2 1 
Amelia 2 1 2 1 ** 1 1 

Robinson 2 1 2 1 ** 1 1 
Washington 2 1 2 1 1 1 1 1 

Central 2 1 2 1 1 1 1 1 
Church 2 1 2 1 1 1 1 1 

Anderson 2 * 2 1 ** -- -- 
Long 2 1 2 -- -- -- 2 *** 

Carter 2 -- 2 1 2 1 -- -- 

Gore 2 1 2 1 1 *** 1 *** 

Grand 2 1 2 1 ** ** 
* indicates no left turn is allowed 
** indicates one shared lane 
*** indicates one lane shared with through 

3.1.2 Data grouping 

The segments between adjacent intersections could have different access points/minor roads, 

layouts, geometric characteristics, signal control plans, and data availability. To ensure the 

accuracy of estimation results, it is necessary to divide the study intersections into several groups 

considering certain factors. In this section, intersections were grouped depending on the distance 

between intersections, number of access points/minor roads between two consecutive 

intersections, and data availability. Table 6 summarizes the distances as well as the number of 

access points/minor roads between each pair of consecutive intersections for both corridors (US 

17/92 and US 441). 
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Table 6: Distances and number of access points/minor roads between two consecutive intersections 

Mills Avenue US 17/92 

Intersection 1 Intersection 2 
Distance between 

intersections (miles) 
Number of minor roads 

between intersections 
Rollins Princeton 0.2 0 

Princeton Nebraska 0.35 1 
Nebraska Virginia 0.1 1 
Virginia Lk. Highland 0.2 2 
Webster Gay 0.15 0 

Gay Morse 0.3 7 

OBT Corridor US 441 

Intersection 1 Intersection 2 
Distance between 

intersections (miles) 
Number of minor roads 

between intersections 

Colonial Dr. Amelia 0.3 2 
Amelia Robinson 0.25 1 

Robinson Washington 0.13 2 
Washington Central 0.13 2 

Central Church 0.13 2 
Anderson Long 0.06 0 

Long Carter 0.06 0 
Carter Gore 0.25 3 
Gore Grand 0.3 3 

The intersection groups were determined based on the distances between intersections, 

number of access points, minor roads, and data availability. Each group consists three consecutive 

intersections which includes an upstream intersection, a downstream intersection, and a middle 

intersection at which turning movement volumes are estimated. A total of 19 intersections were 

divided into four groups on US 17/92 and seven groups on US 441. It should be noted that an 

intersection could be included into multiple groups as different intersection types. Those groups 

were utilized in developing turning movement estimation algorithms which will be discussed in 

the upcoming sections. Figure 13 and Figure 14 show different groups of intersections on US 17/92 

and OBT Corridor US 441, respectively. 
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Figure 13: Groups of intersections on US 17/92 
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Figure 14: Groups of intersections on US 441 
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3.1.3 Data processing and aggregation 

The downloaded GRIDSMART data included two main types of data sources: signal data and 

traffic volume data. The signal data is represented by 16 different digits that corresponds to 

different signal phases at an intersection. Further, each record represents a change in an event 

(change in any of the 16 digits). Those 16 digits show whether the signal phase is red (R), yellow 

(Y), or green (G). Moreover, the downloaded traffic volume data includes several files, and each 

file represents a lane at the intersection where virtual detector was implemented in the system. 

Thus, one file includes the data per lane per day. The traffic raw data contains many records, and 

each record represents one vehicle that arrives at the intersection from an approach. Figure 15 

shows three main data sources that were utilized to achieve the project aim: traffic volume, signal 

data, and general features.  

 
Figure 15: Data sources 

Specifically, traffic volume data from different intersections could provide data such as 

counts of turning movement and total entering volumes calculated from upstream and downstream 

intersections movement counts. Besides, cycle length and movements green time could be 

calculated from the signal data sources. Finally, general features such as time periods (AM peak, 

off peak, PM peak or nighttime), directions of movements, group number, and corridor name were 
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also considered while developing the estimation algorithms. 

The collected data was preprocessed by two steps. First, the travel direction was identified. 

Second, the clockwise method was utilized to rename the other approaches based on the travel 

direction in a nomenclature as shown in  Figure 16 (Yuan and Abdel-aty, 2018). For example, if 

the travel direction is towards north, the northbound approach was labeled with number “1” and 

other approaches were labelled as well in the clockwise direction (eastbound: “2”, southbound: 

“3”, westbound: “4”). Similarly, when the travel direction is southbound, it was labelled with 

number “1” and other approaches were labelled clock wisely as well (westbound: “2”, northbound: 

“3”, eastbound: “4”). This process was to generalize the movement estimation at the corridor level. 
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Figure 16: The nomenclature of the four approaches 

For developing models, the raw data was processed and aggregated in the cycle level. The 

data processing and aggregation procedures were shown in Figure 17. First, for the raw signal data 

the coordination phase at intersection was determined and movements phases were identified. 

Thus, the start and end of cycle timestamps could be calculated based on the coordination phase 

of the intersection. Afterwards, the intersection’s cycle lengths along the whole month as well as 
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the green time for each movement per approach per cycle were calculated. Second, the approach 

direction (Northbound, Southbound, Eastbound, or Westbound) and movements types (through, 

left, right, U-turn) of the raw traffic counts data were determined for each record. Then, the 

downloaded data by each day were combined in one file.  

 
Figure 17: Data processing and aggregation 

The two processed datasets for both signal and traffic counts data were merged into one 

big dataset. This dataset was aggregated by grouping the counts of each movement per cycle. As 

a result, a final dataset for each intersection including turning movements counts, cycle lengths, 
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and green times for each movement was prepared. The data of both Northbound and Southbound 

directions were combined into one dataset. 

Individual dataset for each group  defined in Figure 13 and Figure 14 was constructed using 

its intersections data. Each dataset included the signal data and turning movements aggregated 

counts of upstream and downstream intersections. It also included signal data for the middle 

intersection (the target intersection at which turning movements were estimated). Further, 

weekends (Saturdays and Sundays) were removed from the dataset as their traffic fluctuation 

differs from weekdays. The three intersections were merged together based on the previously 

defined cycle lengths for the target (middle) intersection. Moreover, two signal cycles were merged 

together (current cycle and previous cycle) for developing the movement estimation algorithms. 

Figure 18 shows the procedure of defining cycles in a certain group of intersections.  

Finally, general features such as time period (am peak, off peak, pm peak or nighttime), 

direction of movement, group number, and corridor name were included in the datasets in order to 

identify the records in the general models. Besides, the total entering volume for Northbound and 

Southbound approaches were calculated per cycle using the turning movements counts for the 

upstream and downstream intersections.  
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Figure 18: Defining signal cycles in one group 

To develop the generic models, the data of groups were combined for the US 17/92 and 

US 441 corridors, respectively. Besides, all data of the two corridors were further combined to 

develop generic models based on all data. Figure 19 shows a flowchart that summarizes 

arrangements of different datasets. Finally, totally 14 datasets were prepared and compiled to 

develop generic turning movement estimation algorithms as well as individual algorithms for each 

specific corridor and group. Each dataset includes 110 features (traffic counts, green times, cycle 

length, and general features), and the description of those features were summarized in Table 7. 

Further,  

Table 8 shows the final datasets and their corresponding number of records.  
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Figure 19: Summary of datasets arrangements 

Table 7: Features labelling and description 

Variable Description 
CycleLengthM Cycle length at middle intersection 

1LGM Left turn green time at middle intersection (direction of movement) 
1SGM Through movement green time at middle intersection (direction of movement) 
3SGM Through movement green time at middle intersection (opposed to direction of movement) 
2SGM Through movement green time at middle intersection (East-West direction) 

CycleLengthD Cycle length at downstream intersection 
1LGD Left turn green time at downstream intersection (direction of movement) 
1SGD Through movement green time at downstream intersection (direction of movement) 
3LGD Through movement green time at downstream intersection (opposed to direction of movement) 
3SGD Through movement green time at downstream intersection (East-West direction) 
2LGD Left turn green time at downstream intersection (East-West direction) 
2SGD Through movement green time at downstream intersection (East-West direction) 
4LGD Left turn green time at downstream intersection (West-East direction) 
4SGD Through movement green time at downstream intersection (West-East direction) 
1LD Left turn volume at downstream intersection (direction of movement) 
1RD Right turn volume at downstream intersection (direction of movement) 
1SD Through movement volume at downstream intersection (direction of movement) 
3LD Left turn volume at downstream intersection (opposed to direction of movement) 
3RD Right turn volume at downstream intersection (opposed to direction of movement) 
3SD Through movement volume at downstream intersection (opposed to direction of movement) 
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Variable Description 
2LD Left turn volume at downstream intersection (East-West direction) 
2RD Right turn volume at downstream intersection (East-West direction) 
2SD Through movement volume at downstream intersection (East-West direction) 
4LD Left turn volume at downstream intersection (West-East direction) 
4RD Right turn volume at downstream intersection (West-East direction) 
4SD Through movement volume at downstream intersection (West-East direction) 

CycleLengthU Cycle length at Upstream intersection 
1LGU Left turn green time at upstream intersection (direction of movement) 
1SGU Through movement green time at upstream intersection (direction of movement) 
3LGU Through movement green time at upstream intersection (opposed to direction of movement) 
3SGU Through movement green time at upstream intersection (East-West direction) 
2LGU Left turn green time at upstream intersection (East-West direction) 
2SGU Through movement green time at upstream intersection (East-West direction) 
4LGU Left turn green time at upstream intersection (West-East direction) 
4SGU Through movement green time at upstream intersection (West-East direction) 
1LU Left turn volume at upstream intersection (direction of movement) 
1RU Right turn volume at upstream intersection (direction of movement) 
1SU Through movement volume at upstream intersection (direction of movement) 
3LU Left turn volume at upstream intersection (opposed to direction of movement) 
3RU Right turn volume at upstream intersection (opposed to direction of movement) 
3SU Through movement volume at upstream intersection (opposed to direction of movement) 
2LU Left turn volume at upstream intersection (East-West direction) 
2RU Right turn volume at upstream intersection (East-West direction) 
2SU Through movement volume at upstream intersection (East-West direction) 
4LU Left turn volume at upstream intersection (West-East direction) 
4RU Right turn volume at upstream intersection (West-East direction) 
4SU Through movement volume at upstream intersection (West-East direction) 

Period AM peak, PM peak, Off peak, Night-time 
1Ent Total volume entering intersection (direction of movement) 
3Ent Total volume entering intersection (opposed to direction of movement) 

1XCycleLengthM Cycle length at middle intersection for previous cycle for previous cycle 
1X1LGM Left turn green time at middle intersection (direction of movement) for previous cycle 
1X1SGM Through movement green time at middle intersection (direction of movement) for previous cycle 
1X3SGM Through movement green time at middle intersection (opposed to direction of movement) for previous cycle 
1X2SGM Through movement green time at middle intersection (East-West direction) for previous cycle 

1XCycleLengthD Cycle length at downstream intersection for previous cycle 
1X1LGD Left turn green time at downstream intersection (direction of movement) for previous cycle 
1X1SGD Through movement green time at downstream intersection (direction of movement) for previous cycle 
1X3LGD Through movement green time at downstream intersection (opposed to direction of movement) for previous cycle 
1X3SGD Through movement green time at downstream intersection (East-West direction) for previous cycle 
1X2LGD Left turn green time at downstream intersection (East-West direction) for previous cycle 
1X2SGD Through movement green time at downstream intersection (East-West direction) for previous cycle 
1X4LGD Left turn green time at downstream intersection (West-East direction) for previous cycle 
1X4SGD Through movement green time at downstream intersection (West-East direction) for previous cycle 
1X1LD Left turn volume at downstream intersection (direction of movement) for previous cycle 
1X1RD Right turn volume at downstream intersection (direction of movement) for previous cycle 
1X1SD Through movement volume at downstream intersection (direction of movement) for previous cycle 
1X3LD Left turn volume at downstream intersection (opposed to direction of movement) for previous cycle 
1X3RD Right turn volume at downstream intersection (opposed to direction of movement) for previous cycle 
1X3SD Through movement volume at downstream intersection (opposed to direction of movement) for previous cycle 
1X2LD Left turn volume at downstream intersection (East-West direction) for previous cycle 
1X2RD Right turn volume at downstream intersection (East-West direction) for previous cycle 
1X2SD Through movement volume at downstream intersection (East-West direction) for previous cycle 
1X4LD Left turn volume at downstream intersection (West-East direction) for previous cycle 
1X4RD Right turn volume at downstream intersection (West-East direction) for previous cycle 
1X4SD Through movement volume at downstream intersection (West-East direction) for previous cycle 

1XCycleLengthU Cycle length at Upstream intersection for previous cycle 
1X1LGU Left turn green time at upstream intersection (direction of movement) for previous cycle 
1X1SGU Through movement green time at upstream intersection (direction of movement) for previous cycle 
1X3LGU Through movement green time at upstream intersection (opposed to direction of movement) for previous cycle 
1X3SGU Through movement green time at upstream intersection (East-West direction) for previous cycle 
1X2LGU Left turn green time at upstream intersection (East-West direction) for previous cycle 
1X2SGU Through movement green time at upstream intersection (East-West direction) for previous cycle 
1X4LGU Left turn green time at upstream intersection (West-East direction) for previous cycle 
1X4SGU Through movement green time at upstream intersection (West-East direction) for previous cycle 
1X1LU Left turn volume at upstream intersection (direction of movement) for previous cycle 
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Variable Description 
1X1RU Right turn volume at upstream intersection (direction of movement) for previous cycle 
1X1SU Through movement volume at upstream intersection (direction of movement) for previous cycle 
1X3LU Left turn volume at upstream intersection (opposed to direction of movement) for previous cycle 
1X3RU Right turn volume at upstream intersection (opposed to direction of movement) for previous cycle 
1X3SU Through movement volume at upstream intersection (opposed to direction of movement) for previous cycle 
1X2LU Left turn volume at upstream intersection (East-West direction) for previous cycle 
1X2RU Right turn volume at upstream intersection (East-West direction) for previous cycle 
1X2SU Through movement volume at upstream intersection (East-West direction) for previous cycle 
1X4LU Left turn volume at upstream intersection (West-East direction) for previous cycle 
1X4RU Right turn volume at upstream intersection (West-East direction) for previous cycle 
1X4SU Through movement volume at upstream intersection (West-East direction) for previous cycle 
1X1Ent Total volume entering intersection (direction of movement) for previous cycle 
1X3Ent Total volume entering intersection (opposed to direction of movement) for previous cycle 

ID Group ID 
Direction Direction of Estimation 
Corridor Corridor Name 

1SM Left turn volume at middle intersection (direction of movement) 
3SM Right turn volume at middle intersection (direction of movement) 
2SM Through movement volume at middle intersection (direction of movement) 
4SM Left turn volume at middle intersection (opposed to direction of movement) 
1LM Right turn volume at middle intersection (opposed to direction of movement) 
3LM Through movement volume at middle intersection (opposed to direction of movement) 
2LM Left turn volume at middle intersection (East-West direction) 
4LM Right turn volume at middle intersection (East-West direction) 
1RM Through movement volume at middle intersection (East-West direction) 
3RM Left turn volume at middle intersection (West-East direction) 
2RM Right turn volume at middle intersection (West-East direction) 
4RM Through movement volume at middle intersection (West-East direction) 

 
 

Table 8: Final datasets and their corresponding number of records 

Dataset Group Number of Records 

Two Corridors -- 318,899 

Mills Corridor -- 116,036 

Mills Corridor Grp1 34,670 

Grp2 25,572 

Grp3 35,612 

Grp4 20,182 

OBT Corridor -- 202,863 

OBT Corridor Grp1 20,858 

Grp2 33,206 

Grp3 30,574 

Grp4 22,854 

Grp5 32,872 

Grp6 31,556 

Grp7 30,943 

3.2 Data Validation 

It was essential to understand GRIDSMART vehicle counts’ accuracy before using its data in 

developing turning movement estimation algorithm(s). Thus, GRIDSMART accuracy was first 
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validated. Manual turning movements counts per approach per intersection were carried out over 

a given time period. Afterwards, the manual counts were compared with the corresponding 

GRIDSMART system data. Consequently, three intersections along US 17/92 (intersections at 

Nebraska St., Princeton St, and Rollins St.) were chosen to validate GRIDSMART data counts. 

The intersections were chosen as the distance between them were relatively short and there are 

only few other access points between intersections. The validation was carried out twice, the first 

time was on March 8th, 2019 before starting the model development and the second time was on 

December 23rd, 2019. The two validation efforts were conducted for different traffic conditions: 

the first one reflected the traffic during a regular weekday while the second one indicated the traffic 

during holiday conditions.  

(1) First validation 

To conduct the first validation, manual counts were carried out for 30 minutes during both 

AM and PM peak periods. Videos were recorded at the same time. Table 9 shows the AM and PM 

peak times in which the vehicles were manually counted at each intersection. Moreover,  
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Table 10 and Error! Reference source not found. show the average five minutes turning 

movements for both Manual counts and the GRIDSMART system for the selected intersections. 

Table 9: AM and PM counts intervals 

Intersection Name AM Peak Counts Interval PM Peak Counts Interval 

US 17/92 and Nebraska St. 07:45 to 08:15 04:45 to 05:15 

US 17/92, and Princeton St. 08:15 to 08:45 05:15 to 05:45 

US 17/92 and Rollins St. 08:45 to 09:15 05:45 to 06:15 
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Table 10: Turning Movements’ Counts - AM peak 

Movement Mills and Nebraska Mills and Princeton Mills and Rollins 
 Manual GRIDSMART Manual GRIDSMART Manual GRIDSMART 

NB-Through 104 107 93 91 69 81 

NB-Right 1 1 0 0 6 1 

NB-Left 2 2 43 44 2 9 

NB-Uturn 0 0 0 0 0 0 

SB-Through 78 84 76 73 82 66 

SB-Right 3 4 7 7 0 6 

SB-Left 16 18 0 6 8 2 

SB-Uturn 0 0 0 0 0 0 

EB-Through 2 2 0 0 3 3 

EB-Right 1 1 45 31 2 4 

EB-Left 1 1 7 7 1 3 

EB-Uturn 0 0 0 0 0 0 

WB-Through 2 2 0 0 2 3 

WB-Right 28 21 0 0 5 0 

WB-Left 1 1 0 0 2 1 

WB-Uturn 0 0 0 0 0 0 

Table 11: Turning Movements’ Counts - PM peak 

Movement Mills and Nebraska Mills and Princeton Mills and Rollins 
 Manual GRIDSMART Manual GRIDSMART Manual GRIDSMART 

NB-Through 77 76 78 79 99 76 

NB-Right 2 2 0 0 6 2 

NB-Left 5 7 34 33 3 10 

NB-Uturn 0 0 0 0 0 0 

SB-Through 117 111 95 95 77 97 

SB-Right 10 9 4 5 2 6 

SB-Left 25 28 0 9 9 3 

SB-Uturn 0 0 0 0 0 0 

EB-Through 4 4 0 0 2 2 

EB-Right 3 3 59 53 1 6 

EB-Left 4 4 9 9 1 5 

EB-Uturn 0 0 0 0 0 0 

WB-Through 3 2 0 0 2 2 

WB-Right 28 27 0 0 8 1 

WB-Left 3 3 0 0 4 1 

WB-Uturn 0 0 0 0 0 0 

 

Manual counts comprise vehicles’ turning movements in five minutes intervals. Mean 

Absolute Error (MAE) between manual counts data and GRIDSMART system data was 

calculated. The following  
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Table 12 and Table 13 show the MAE value for all possible turning movements for the 

three intersections for both AM peak and PM peak respectively. 

 

Table 12: Turning Movements’ Mean Absolute Error - AM peak 

Turning Movement Mills and Nebraska Mills and Princeton Mills and Rollins 

NB-Left 0.67 4.83 7.00 

NB-Right 0.00 -- 5.17 

NB-Through 10.33 4.83 13.00 

NB-Uturn 0.00 0.00 0.00 

SB-Left 2.50 -- 6.50 

SB-Right 1.33 0.33 4.83 

SB-Through 8.17 2.67 15.83 

SB-Uturn 0.00 0.00 0.00 

EB-Left 0.33 0.67 2.00 

EB-Right 0.00 13.33 2.33 

EB-Through 0.50 -- 1.50 

EB-Uturn 0.00 0.00 0.00 

WB-Left 0.00 -- 1.33 

WB-Right 10.00 -- 4.00 

WB-Through 1.00 -- 1.17 

WB-Uturn 0.00 -- 0.00 

Table 13: Turning Movements’ Mean Absolute Error - PM peak 

Turning Movement Mills and Nebraska Mills and Princeton Mills and Rollins 
NB-Left 2.00 1.33 7.00 

NB-Right 0.00 -- 3.67 
NB-Through 2.17 1.17 23.00 

NB-Uturn 0.00 0.00 0.00 
SB-Left 4.00 -- 6.67 

SB-Right 0.83 0.17 3.50 
SB-Through 5.83 0.83 21.67 

SB-Uturn 0.00 0.00 0.00 
EB-Left 0.50 0.50 3.67 

EB-Right 0.33 7.00 5.33 
EB-Through 0.17 -- 0.67 

EB-Uturn 0.00 0.00 0.00 
WB-Left 0.33 -- 2.83 

WB-Right 0.83 -- 6.67 
WB-Through 0.83 -- 0.83 

WB-Uturn 0.00 -- 0.00 

 
The results showed that for Intersection US 17/92 & Nebraska St. are relatively low. 

However, for the other two intersections (US 17/92 & Princeton St. and US 17/92 & Nebraska 

St.), some turning movements counts have high MAE (e.g., NB-Left, SB-Through, and EB-Right). 
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For more interpretations of MAE values, the relation between the average manually counted 

turning movements in five minutes and the corresponding MAE values were plotted for both AM 

and PM peaks in Figure 20. The figures show that most of the high MAE values occurred when 

the volumes were too small. However, MAE values decreased in case of high five minutes 

volumes. The results suggested that for the movements with high volume, the GRIDSMART 

system could provide acceptable detection accuracy. However, for some movements with low 

traffic volume, large errors might be found. 

  

 

Figure 20: MAE for average five minutes volumes  
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(2) Second validation 

Another validation was carried out by comparing turning movement counts manually per approach 

per intersection for two hours in the AM peak period as the ground truth data with the 

corresponding GRIDSMART data. Four intersections along the US 17/92 corridor (intersections 

at Nebraska St., Princeton St, Rollins St., and Virginia St.) were chosen for this validation. Three 

intersections were common in the first and the second validation: Nebraska St., Princeton St, and 

Rollins St.  The intersections were chosen as the distance between them were relatively short and 

there are only few other access points between intersections. The videos were recorded on 23rd of 

December from 7:00 to 9:00 AM.  

GRIDSMART data for the same two-hour period was downloaded, processed, and 

aggregated at the cycle level. Then, turning movements were counted for each cycle using the 

same defined start and end of cycles timestamps for the aggregated data. Cycle level turning 

movement counts for Northbound and Southbound were plotted in 
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Figure 21 for both the ground truth and GRIDSMART data. It shows that GRIDSMART 

could provide reasonable counts for most intersections. However, there existed several significant 

errors for several movements. For example, significant difference could be observed between the 

ground truth data and the GRIDSMART data for the northbound and southbound movements at 

the intersection US 17/92 and Rollins street.  

Finally, in order to evaluate and validate the GRIDSMART data, Mean Absolute Error 

(MAE) and Mean Absolute Percentage Error (MAPE) for each movement were calculated. Table 

14 shows the comparison results. The table shows that some intersections have relatively high 

MAEs for certain movements such as the northbound through movement for the intersection with 

Rollins St. and southbound through movements for the intersections at Rollins St. and Virginia St. 

Moreover, the MAPE values were relatively high for right and left turns movements since the 

volumes are so low (i.e., lower than 10 vehicles per cycle) and MAPE is more sensitive to the 

error. Finally, the MAPE values for Rollins intersection were found to be relatively high in all 

movements.  MAPEs for other intersections were around 10%. 
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Figure 21: Cycle level turning movements volume fluctuation on US 17/92 corridor 
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Table 14: Performance measures of GRIDSMART data based on the ground truth data 

Mean Absolute Error (MAE) 

Turning Movement Nebraska Princeton Rollins Virginia 

NB - Through 1.56 4.21 9.02 2.55 

NB - Left 0.19 1.67 2.76 0.45 

NB – Right 0.30 -- 0.62 0.31 

SB – Through 1.56 2.17 11.05 3.67 

SB – Left 0.49 -- 0.69 0.29 

SB – Right 0.14 0.76 2.57 0.55 

EB – Through 0.19 -- 0.62 0.64 

EB – Left 0.19 0.50 1.71 0.43 

EB – Right 0.30 3.19 1.95 0.64 

WB – Through 0.12 -- 1.12 1.02 

WB – Left 0.09 -- 0.81 0.62 

WB - Right 1.21 -- 0.50 1.31 

Mean Absolute Percentage Error (MAPE) 

Turning Movement Nebraska Princeton Rollins Virginia 

NB - Through 10.67% 10.89% 30.46% 8.32% 

NB - Left 26.92% 11.98% 57.35% 13.46% 

NB – Right 20.54% -- 60.00% 21.06% 

SB – Through 5.12% 6.61% 46.35% 11.79% 

SB – Left 9.27% -- 100.00% 5.52% 

SB – Right 6.29% 26.17% 80.23% 21.00% 

EB – Through 11.76% -- 72.22% 9.70% 

EB – Left 11.67% 17.07% 79.43% 29.29% 

EB – Right 23.33% 21.99% 63.72% 20.72% 

WB – Through 4.76% -- 66.67% 10.86% 

WB – Left 5.00% -- 77.78% 23.80% 

WB - Right 14.03% -- 100.00% 14.93% 

The MAEs on AM peak periods in the two validation studies are shown in 

 Figure 22.  The same color indicates the data from the same intersection while the solid and dotted 

lines were the data in different dates. Generally, the validation results were consistent for both 

March19th and December 23rd Validations on AM peak period. However, the MAE values for the latter 

were lower as the data were aggregated in cycle level. Besides, it was concluded that some intersections 

have relatively high MAEs for certain movements such as the northbound and southbound through 

movements for the intersection with Rollins St. Further, in case of low right and left turn movements 
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(i.e., lower than 10 vehicles per cycle), the MAE values were found to be relatively high. 

 

 Figure 22: Comparison between AM peak validation results 

3.3 Methodology 

Various traffic prediction approaches were developed and introduced in the previous literature to 

predict future traffic parameters (e.g., traffic flow, speed, and travel time). The selection of the 

most appropriate methodology in estimating traffic parameters is important. Different approaches 

have been widely employed in previous short-term traffic forecasting studies (parametric models, 

machine learning models, and deep learning models). Those approaches were followed to develop 

a comprehensive turning movement estimation model using the processed dataset for the US 17/92 

corridor. The models were developed and compared based on the data of AM peak periods (7:00 

to 9:00 am). The following models were applied, tuned, and tested: 

1. Negative binomial model 
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2. Finite mixture model 

3. Multivariate adaptive regression spline 

4. Neural networks 

5. Random forest 

6. Gradient boosting 

The models were developed to estimate corridor-level (North-South direction) through 

movements. They were trained to estimate one traffic movement at a time. For the East-West 

direction, it’s hard to estimate turning movements as there is no data at the upstream and 

downstream intersections could be used for the model. Once detectors are installed at the east-west 

intersections, the estimation models could be extended to the east and west approaches. 

Furthermore, each dataset was split into the training dataset and test dataset with a ratio of 4:1. 

3.3.1 Negative binomial model 

Negative Binomial (NB) has been widely used to estimate the over-dispersed count data 

(Daraghmi et al., 2012). Overdispersion occurred when the mean and the variance are not equal. 

Hence, the mean and the variance were calculated for through and left turn movements. For 

through movement, the calculated mean and variance were 22 and 466, respectively. Further, for 

left turn movements, the mean and variance were 2.2 and 15. The generalized negative binomial 

equation (4) can be written as: 

 ln (𝑌) = 𝛼 + 𝛽𝑖𝑋𝑖+∈ (1) 

Where Y is the response variable, α is the intercept, Xi is a predictor (i = 1, 2, 3, … ,n), n is the 

number of predictors, β is the regression coefficient, and ∈ is the regression error vector. 

3.3.2 Finite mixture model 

The finite mixture model is considered as a highly flexible approach that has been widely used in 
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considerable applications. Usually, the finite mixture model deals with the stagnant stochastic 

processes as it considers the mixed components as Gaussian distributions. Nevertheless, it can deal 

with nonstationary processes by applying the finite mixture model on several time intervals. The 

generalized equation (5) of the finite mixture model is as follow: 

𝑓(𝑦𝑖)  = ∑ 𝜋𝑘𝑓𝑘(𝑦𝑖)

𝐾

𝑘=1

 (2) 

Where 𝜋𝑘 is the mixing probability of component k, 0 ≤  𝜋𝑘  ≤ 1, and ∑ 𝜋𝐾
𝑘=1 𝑘

= 1 for k = 1, 2, 

3, … K. Moreover,  𝑓𝑘(𝑦𝑖) could follow any probability distribution (Chen et al., 2014). 

3.3.3 Multivariate adaptive regression spline 

Multivariate Adaptive Regression Splines (MARS) is a nonparametric regression approach that 

was widely adopted in various data analyses including traffic flow prediction (Ermagun and 

Levinson, 2018). It could model non-linearities as well as high-dimensional predictors’ and 

responses interactions (Friedman, 1991). The MARS model aims to build a regression function 

using a combination of basis functions. The sum of the basis functions represents the regression 

function (Xu et al., 2013). Generally, the MARS model is shown in equation (6): 

𝑌 = 𝑓(𝑋)+ ∈ =  𝛽𝑜 + ∑ 𝛽𝑚

𝑟

𝑗=1

ℎ𝑚(𝑋)+ ∈ (3) 

Where Y is the response variable, X is a predictor, 𝛽𝑜  is the intercept, each ℎ𝑚(𝑋) is a basis 

function or a product of two or more such functions, 𝛽𝑚  are the coefficients which usually 

estimated by minimizing the sum of squares error and  ∈ is the regression error. 

3.3.4 Neural networks 

Neural Network (NN) is a non-parametric flexible approach that could model non-linearities and 
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complex relations between predictors and response variables (Ghanim and Shaaban, 2018). A three 

layered NN that contains two hidden layers and one output layer was utilized to estimate the traffic 

movement counts at the middle intersection. Input vectors were processed by the input layer, and 

then weights and biases were applied by the hidden layer to the signals received from the input 

layer. The NN model adjusts weights and biases in order to improve the performance of the model. 

Moreover, Rectified Linear Unit (ReLU) was utilized as an activation function. After several 

iterations, the first hidden layer was set to contain 100 neurons, while the second one contained 40 

neurons. Finally, the output layer received the signal from the second hidden layer and transferred 

it into the outcome of the NN which represented the predicted movement. Figure 23 shows the 

structure of the utilized NN. 

 

Figure 23: Artificial Neural Network’s Layout Structure 

3.3.5 Random forest 

The Random Forest algorithm is a nonparametric approach based on decision trees that assumes a 

joint distribution. A n-dimensional random vector X = (X1, X2, … Xn)T represents the predictor 
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variables and Y represents the response variable (Zhang and Ma, n.d.). Random Forest assumes a 

joint distribution 𝑃𝑋𝑌(𝑋, 𝑌) . In order to predict Y, a prediction function is determined by 

minimizing the expected values of the loss function 𝑓(𝑋). The utilized loss function in case of 

regression is commonly the squared error loss as shown in equation (7). 

 𝐿(𝑌, 𝑓(𝑋)) = (𝑌 − 𝑓(𝑋))2 (4) 

The number of trees are tuned based on the performance measures in equations 5, 6, and 

7(2)(2)(3)(2). The best measures corresponding to 60 decision trees were utilized in the developed 

model. 

3.3.6 Gradient Boosting Decision Trees 

Gradient Boosting is an ensemble machine learning approach based on sequentially trained 

decision trees. It fits the negative gradients (residual errors) in order to learn the decision trees (Ke 

et al., 2017). This approach emphasizes the incorrectly estimated training records in the model. 

Thus, it generates multiple models in sequence. Incorrect estimates in previous base models appear 

more frequently in the training data than the correctly estimated ones. Consequently, the main aim 

of a new base model is to correct the errors of the previous models. The main concept is to combine 

several weak models to create one high accurate model (Zhang and Haghani, 2015a). 

When using Gradient Boosting Decision Trees (GBDT), it is considered as an optimization 

approach that adds a base model in each step to minimize a certain loss function (mean absolute 

error or the mean squared error loss functions). In boosting, the loss function measures the 

deviation of the predicted values from the corresponding ground truth. Shortly, the GBDT 

develops consecutive models. In each model, training data is resampled in order to provide the 

model with the most useful information. Then, weights are adjusted in each training step based on 

the produced error from the previous step. Thus, incorrectly estimated records have higher weights 
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in the consecutive model. 

3.3.7 Performance Measures  

Three performance measures were utilized to evaluate the developed models: Mean Absolute Error 

(MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). Those 

measures are defined in Equations (5) (6), and (7). 

 𝑀𝐴𝐸 =  
1

𝑛
∑|𝑦𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦𝑝𝑟𝑒𝑑| (5) 

 𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑|𝑦𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦𝑝𝑟𝑒𝑑|

22

 (6) 

 𝑀𝐴𝑃𝐸 = ( 
1

𝑛
∑ |

𝑦𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦𝑝𝑟𝑒𝑑

𝑦𝑎𝑐𝑡𝑢𝑎𝑙
|) ∗ 100 (7) 

Where 𝑦actual  is the movement data from GRIDSMART, 𝑦𝑝𝑟𝑒𝑑  is the estimated movement’s 

volume, and n is the number of observations. The performance measures results for testing data 

were relaxed by assuming the estimated movement’s volumes correct if they are below minimum 

green time’s volume for through and left turn movements for urban signalized intersection 

(Urbanik et al., 2015).  

 

3.3.8 Model Selection  

The models were compared using the previously defined performance measures in equations (5) 

(6), and (7). The compared performance measure was summarized to conclude the best modelling 

approach to be utilized in developing turning movement estimation algorithms for individual 

groups, each corridor, and for the whole study area. Table 15 shows performance measures for the 

developed models. It indicates that the GBDT model had the lowest values for all the performance 

measures among all the developed models. The MAE, RMSE, and MAPE for gradient boosting 
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were 4.4%, 6.0%, and 13.10%, respectively. Hence, the GBDT model was chosen to be applied to 

the rest of the processed datasets. 

Table 15: Performance measures for the developed models 

Through Movement 

Model MAE RMSE MAPE 

Negative Binomial 9.02 18.60 26.20% 

Finite Mixture Model 5.24 6.90 14.60% 

Multivariate Adaptive Regression Spline 4.66 6.08 14.21% 

Neural Networks 18.27 22.75 34.90% 

Random Forest 5.10 7.68 14.20% 

Gradient Boosting Decision Trees 4.40 6.00 13.10% 

3.4 Developing Turning Movement Estimation Models 

In this section, the development of turning movements estimation models were illustrated. The 

developed models were utilized in estimating cycle-level through and left turn movement counts, 

which could be utilized as inputs to adjust traffic signal. As a result of the performance measures 

comparison in Table 15, the GBDT model was applied to the processed datasets. The processed 

datasets include a large dataset that combines two corridors (US 17/92 and US 441 corridors), 

individual datasets for each corridor, and individual datasets for each group of intersections. 

Different models were developed for different movements separately. In total, the GBDT model 

was applied to 14 datasets that were shown previously in Table 8. 

First, a model that comprises all variables from each dataset. Model’s hyperparameters 

(number of trees, interaction depth, and shrinkage) were tuned. Number of trees corresponds to the 

number of basis functions and iterations in the additive expansion. Interaction depth enumerates 

the maximum allowed variable interactions of each tree. Shrinkage describes the learning rate or 

the step-size reduction. Moreover, cross-validation was implemented in the GBDT model using 

tuned number of folds to avoid model’s overfitting (Greenwell et al., 2019). 

The GBDT outputs relative influence value for each variable that indicates its importance 

in the model. This value is computed based on Mean Squared Error (MSE) for each split in each 
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tree. Then, each variable’s improvement is averaged across all the trees. A variable is considered 

most important when having largest average decrease in MSE. Variables with zero feature 

importance were excluded from the model. The remaining variables were utilized to train the 

model. Further, those variables were reduced gradually using the backward method. Variables 

were excluded from the dataset one by one. In each iteration the performance measures for training 

and testing datasets were calculated. If they remained constant or improved thus the variable 

should be removed from the dataset. Moreover, if they got worsened, the variable should be kept 

in the dataset. Subsequently, the final model was trained. Finally, marginal effects were calculated 

for all variables as they could capture the changes in the dependent variable corresponding to a 

unit change in the response variables (Cai et al., 2016).  

Traffic volume fluctuations for peak periods (AM and PM peaks) varies from night-time 

and off-peak period. Thus, individual models were trained based on subsets of datasets that 

includes only AM and PM peak periods data. AM and PM periods were considered from 7:00 to 

10:00 and from 15:00 to 18:00 respectively. The following subsections illustrates the developed 

generic models, corridor models, and group models for all processed datasets, respectively. 

3.4.1 Generic Model 

Generic GBDT models were developed using datasets that combines the two corridors (US 17/92 

and US 441 corridors). Individual models were developed for through and left-turn movements, 

respectively as the movements have corresponding signal phases. It is difficult to estimate the 

right-turn volume because the right-turn vehicles are not restricted by the signal timing. Variables 

reduction was carried out for each model based on the above-mentioned methodology. The number 

of utilized variables to train the generic through and left turn movement models were 23 and 53, 

respectively. Similarly, GBDT models were developed for the peak periods. Furthermore, 

marginal effects were calculated for each variable in each model in Table 16 Table 17 for through 
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and left-turn movements, respectively. Finally, the estimated counts were plotted along with their 

corresponding true volumes from GRIDSMART system. Figure 24 shows plots of estimated and 

observed through and left turn movements.  

Table 16: Through movement models marginal effects 

Variable Marginal Effect Variable Marginal Effect 

X1Ent 0.2296 X1X1LD 0.0902 

X1SD 0.2486 X1LD 0.3439 

X4SD 0.0289 X3SGM 0.0046 

X3Ent -0.0036 X2LGM 0.0408 

CycleLengthM 0.0620 X1SGM 0.0133 

X1X1Ent 0.0742 X3SU -0.0071 

Period -- CycleLengthU -0.0248 

X1X3Ent 0.0287 CycleLengthD -0.0095 

X1SU 0.0828 X3LGD -0.0052 

X4LD 0.0045 X3SD -0.0080 

X1X1SU 0.0196 X4RU 0.0212 

X4SU -0.0101   

 

Table 17: Left turn movement models marginal effects 

Variable Marginal Effect Variable Marginal Effect 

X1Ent 0.0215 X3LGM -0.0025 

X1LGM 0.0613 X1LGD 0.0017 

X4LGU 0.0014 X1X3SU 0.0028 

X1X4LGU 0.0003 X1LU -0.0226 

X1SD -0.0001 X3SGD -0.0017 

X1X1Ent 0.0072 X4SD -0.0048 

X1SGU -0.0063 X1X3SGD -0.0005 

X1X1LGM -0.0015 X2SGD 0.0041 

X4SGU -0.0098 X3SGM -0.0031 

X2SGM 0.0044 X1X2SGD 0.0052 

X1X4RU 0.0279 X1X4SGM 0.0026 

X3LU 0.0491 X1SU 0.0055 

X4SGM 0.0090 X1X4LGD -0.0001 

X4RU 0.0456 X2LGM -0.0051 

X1SGM 0.0037 X3LD 0.0048 

X1X1SGU -0.0031 X1X2RU 0.0079 

X1X3LU 0.0114 X3SU -0.0005 

Period -- X1X4LD 0.0143 

X3SGU -0.0005 X1X4RD -0.0147 

X1X2SGM 0.0022 Direction -- 

X2RU 0.0157 X1X1LGD 0.0005 

X1X1SD -0.0004 X1X3SGU -0.0003 

X4LD 0.0269 CycleLengthU -0.0015 

X1RD 0.0172 X1RU 0.0157 

X4SGD 0.0000 X3LGU -0.0021 

CycleLengthM 0.0048 X1X3LGM 0.0001 
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Variable Marginal Effect Variable Marginal Effect 

X1LGU -0.0017   

 

 

Figure 24: Estimated turning movement counts and their corresponding GRIDSMART counts  

3.4.2 Corridors Models 

The corridor models consist of eight different models. First, a generic model was developed for 

each corridor (US 17/92 and US 441) for both through and left-turn movements. Then, turning 

estimation models were developed for peak periods. The following models were developed for US 

17/92 and US 441 corridors: 

 Model to estimate through movement using generic dataset. 

 Model to estimate left turn movement using generic dataset. 

 Model to estimate through movement in peak periods (AM and PM peaks). 

 Model to estimate left turn movement in peak periods (AM and PM peaks). 
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Likewise, for each model, variables were chosen based on relative influence values and the effects 

of excluding the variable from the model. Twenty-nine variables were utilized in training both the 

generic models of through movement for US 17/92 and US 441 corridors. Moreover, 40 and 59 

variables were utilized to train the generic left-turn movement models for US 17/92 and US 441 

corridors, respectively. 

The marginal effects were calculated for each variable to capture its effect in the model. 

Table 18 to Table 21 show the calculated marginal effects for the developed generic through and 

left turn movement models for the US 17/92 and US 441 corridors. Finally, the estimated turning 

movement counts were plotted against the GRIDSMART counts for both corridors. Figure 25 and 

Figure 26 show these temporal plots of generic models for both through and left-turn movements, 

respectively.  
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Figure 25: Estimated turning movement counts and their corresponding GRIDSMART counts (US 17/92) 
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Figure 26: Estimated turning movement counts and their corresponding GRIDSMART counts (US 441) 

Table 18: Generic through movement models marginal effects – US 17/92 corridor  

Variable Marginal Effect Variable Marginal Effect 

X1Ent 0.1967 X1XCycleLengthM -0.0044 

X1SD 0.2167 X4LGM 0.0075 

X1X1Ent 0.0641 X3SGM 0.0049 

X1X1SD 0.0361 X1X1SU 0.0098 

CycleLengthM 0.0509 X1X4LU 0.0165 

X1LD 0.1812 X1X3SGM -0.0032 

X1X3SU -0.0034 X1LGM 0.0158 

X1X2LGM 0.0168 X4LU 0.0740 

X1SU 0.0180 X4SU -0.1115 

X1SGM 0.0063 X3LGD -0.0054 

X2LGM 0.0075 X1X3LGM 0.0065 

X1X1LD 0.1320 X4RU 0.0928 

X1X4LGM 0.0208 CycleLengthD -0.0080 

X1X3Ent 0.0055 CycleLengthU -0.0159 

X1X2RU 0.2612   
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Table 19: Generic left turn movement models marginal effects – US 17/92 corridor 

Variable Marginal Effect Variable Marginal Effect 

X1LGM 0.0745 X4SD 0.0200 

X1Ent 0.0185 X2SGM 0.0024 

X1X1Ent 0.0201 X1X3SGU -0.0015 

X1X4LGU 0.0035 X1X4LD 0.0045 

X4LGU -0.0002 X3SGM -0.0073 

X1X1LGM -0.0063 X2SGD 0.0018 

Direction -- X1X1SGD -0.0011 

X1SD -0.0007 Period -- 

X3SU 0.0035 X1X2RU 0.0058 

X1SGM 0.0054 X1X3LGM 0.0012 

X1SU -0.0036 X3LGM 0.0003 

X4RU 0.0629 CycleLengthM 0.0038 

X3LGU -0.0021 X3SGU -0.0014 

X1SGU -0.0052 X1X2SGD 0.0014 

X1X4RU 0.0196 X1X1SGU -0.0032 

X1X1SU 0.0008 X1RD 0.0172 

X1X3LGD 0.0013 X3LU 0.0134 

X4LD 0.0369 X1X2LGU 0.0005 

X1X3SU 0.0011 X1X4SD 0.0126 

X1X3LGU -0.0005 CycleLengthU -0.0024 

 
Table 20: Generic through movement models marginal effects – US 441 corridor 

Variable Marginal Effect Variable Marginal Effect 

X1Ent 0.1336 X2SGM 0.0228 

X1SD 0.2656 X1X4RU 0.0379 

X1X1Ent 0.0433 X3SU -0.0053 

X3Ent -0.0081 CycleLengthD -0.0121 

CycleLengthM 0.0489 X1RD 0.2245 

X1SU 0.1938 X3LGD -0.0079 

X4LD 0.0283 X1X3RD 0.1007 

X4SU -0.0033 X1X4LU 0.0125 

X1X1SU 0.0262 X1X4SD -0.0576 

X4SD 0.0426 X3SGD -0.0043 

Period 0.0000 X1X4LD -0.0074 

X1X3Ent 0.0150 X1X3SU -0.0034 

X1SGM 0.0304 X3SD -0.0065 

X3SGM 0.0152 CycleLengthU -0.0344 

X1LD 0.3930   
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Table 21: Generic left turn movement models marginal effects – US 441 corridor 

Variable Marginal Effect Variable Marginal Effect 

X4SGM 0.0170 X1X4RU 0.0190 

X1LGM 0.0503 X4LGM -0.0051 

X1Ent 0.0103 X1X3LGU -0.0003 

X1X4SGM 0.0085 X1X1SD 0.0002 

X4SGU -0.0118 X3Ent -0.0005 

X1SD 0.0039 X1X3SGD 0.0006 

Period 0.0000 X4SGD -0.0016 

X4LD 0.0457 X1X4SGD -0.0010 

X1SU 0.0201 X2SU 0.0001 

X1X2LGU 0.0031 X2SGD -0.0001 

X3LGM 0.0023 X4LGU 0.0009 

X3LGU -0.0006 X4SU -0.0006 

X1LGD 0.0025 X1X2SGM 0.0029 

Direction 0.0000 X1LGU -0.0022 

X1SGM 0.0041 X2LGD 0.0002 

X3SU -0.0019 X1X4SGU 0.0000 

X1RU 0.0416 X1X2SU 0.0013 

X1X4SU 0.0001 X1X3SGM -0.0013 

X4RU 0.0150 X1SGD -0.0020 

X3SGU 0.0000 X1X1LGM -0.0030 

X1RD 0.0183 X2LU 0.0116 

X1X2LGM -0.0070 X1X3LGM 0.0001 

X2SGM 0.0046 X1X4LU 0.0120 

X2RU 0.0022 X3LGD 0.0001 

X2LGM -0.0066 CycleLengthD 0.0000 

X3LU 0.0049 CycleLengthU -0.0014 

X1X1LGD 0.0009 X1SGU 0.0000 

X4SD 0.0047 X1X1RD 0.0124 

CycleLengthM 0.0029 X1X1RU 0.0119 

X3SGM -0.0003   

 

3.4.3 Groups Models 

After training several models to estimate the turning movement counts for each group, it was found 

that the performance measures got improved when the utilized datasets were more refined. Thus, 

turning movement estimation models were trained separately for each group in each corridor 

following the same GBDT methodology using peak periods datasets.  A total of 11 groups datasets 

were processed, i.e., four groups at the US 17/92 corridor and seven groups at the US 441 corridor. 

These datasets were utilized to develop generic models as well as peak periods models for each 

group. Note that each developed model estimates one turning movement at a time. Hence, a total 
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of 44 models were trained. Figure 27 shows the developed models for each estimated movement.  

 

Figure 27: Developed groups models for each estimated movement  

3.5  Results 

3.5.1 Summary of Performance for All Conditions 

After training 56 models to estimate short-term through and left-turn movements at signalized 
intersections, the estimated counts were compared to movement counts from the GRIDSMART 
system. Performance measures (MAE, RMSE, and MAPE) were calculated for testing datasets 
for each developed model for different time periods: AM peak, Off peak, PM peak, and Night-

time. Table 22 
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Table 23 shows the calculated performance measures for the through movement models. The model 

performance measures for the individual groups were averaged as well. The results show that the 

performance measures of the groups models are better than the generic models (i.e., two corridors 

model, US 17/92 corridor model, and US 441 corridor model). Thus, implementing a specific 

estimation algorithm for a certain group could improve the estimated through volumes. Similarly, 

Table 23 shows the model performance for left-turn movements. For left-turn movements 

estimation, the generic models measures were found to have around 10% percentage errors and 

even close to the group average values along different time periods.  
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Table 22: Performance measures for through movement models 

Test Dataset AM Peak Off Peak PM Peak Night-Time 

Corridor Group MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE 

Two Corridors -- 5.5 7.4 15.4% 4.6 6.3 15.0% 5.9 8 17.4% 1.8 4.5 11.2% 

Mills Corridor -- 5.5 7.3 15.6% 5.1 6.7 13.4% 6.1 7.9 13.1% 1.4 3.7 8.8% 

Mills Corridor 

US 17/92 

Grp1 3.7 4.8 9.3% 3.3 4.3 8.7% 5.7 7.8 12.6% 0.7 2.1 3.9% 

Grp2 5.5 7.1 13.2% 5 6.5 12.3% 5 6.5 12.4% 6.5 8.4 11.2% 

Grp3 5.5 7.1 19.0% 5.4 7 16.0% 6.2 7.9 16.0% 1 3.1 4.6% 

Grp4 5.8 7.8 10.3% 4.7 6.2 8.4% 5.8 7.2 9.4% 2.3 4.9 13.3% 

OBT Corridor -- 5.1 7 14.2% 4.1 5.6 14.4% 5.4 7.3 17.0% 1.7 4 10.3% 

OBT Corridor 

US 441 

Grp1 5.7 8.1 12.0% 3.7 5.1 9.9% 5.6 7.3 10.5% 2.5 4.7 13.0% 

Grp2 4.6 6.2 10.8% 3.6 5.1 10.3% 5.4 8.4 11.1% 1.4 3.6 10.0% 

Grp3 4.9 6.4 12.8% 4 5.6 12.2% 5.7 7.4 12.0% 1.6 3.4 11.0% 

Grp4 5.3 7.2 12.5% 4.1 5.5 12.9% 5.1 6.9 12.4% 3 5 13.6% 

Grp5 4.5 6.2 12.1% 3.6 5.1 12.5% 5 9.6 10.5% 1.4 3.2 8.6% 

Grp6 4.5 6.1 11.8% 3.6 5.1 12.5% 5 6.8 14.1% 1.4 3.1 8.8% 

Grp7 5 6.7 16.7% 3.8 5.1 11.1% 4.5 6 12.1% 1.4 4 9.3% 

Groups Average 5.00 6.70 12.8% 4.07 5.51 11.5% 5.36 7.44 12.1% 2.11 4.14 9.8% 
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Table 23: Performance measures for left turn movement models 

Test Dataset AM Peak Off Peak PM Peak Night-Time 

Corridor Group MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE 

Two Corridors -- 0.6 1.6 11.4% 0.5 1.5 10.0% 0.9 2.1 11.3% 0.1 0.6 1.5% 

Mills Corridor -- 0.9 1.8 11.2% 1.1 2.1 14.5% 1.6 2.9 19.0% 0.2 0.8 3.0% 

Mills Corridor 

US 17/92 

Grp1 1.4 2.7 7.3% 1.2 2.3 9.7% 1.9 3.6 15.5% 0.1 0.8 1.3% 

Grp2 0.9 1.9 15.0% 1.1 2.1 14.5% 1.2 2.3 9.1% 0.2 1 3.7% 

Grp3 0.7 1.4 15.6% 0.7 1.5 8.5% 1 2.1 9.1% 0.1 0.4 1.1% 

Grp4 0.15 0.7 6.0% 0.6 1.4 11.9% 0.7 1.5 17.0% 0.12 0.7 2.3% 

OBT Corridor -- 0.5 1.4 11.2% 0.3 1.1 5.8% 0.5 1.4 6.0% 0.1 0.5 1.0% 

OBT Corridor 

US 441 

Grp1 0.1 0.1 0.4% 0 0.1 0.1% 0.2 0.8 8.0% 0 0.1 0.1% 

Grp2 0.5 1.6 9.7% 0.01 0.1 0.5% 0.1 1 4.6% 0 0.1 0.1% 

Grp3 0.7 1.5 14.2% 0.9 1.9 14.5% 1.1 2.3 13.3% 0.1 0.5 2.0% 

Grp4 0.4 1.2 9.8% 0.1 0.2 0.4% 0.1 0.2 1.0% 0 0 0.0% 

Grp5 0.2 0.7 0.5% 0.2 0.6 0.0% 0.2 0.6 0.1% 0 0.1 0.1% 

Grp6 1.5 2.3 -- 1.5 2.4 -- 2.2 3 -- 0.2 0.8 -- 

Grp7 0.7 1.6 16.0% 0.2 0.7 4.2% 0.1 0.3 0.8% 0.1 0.4 1.0% 

Groups Average 5.00 6.70 12.8% 4.07 5.51 11.5% 5.36 7.44 12.1% 2.11 4.14 9.8% 
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The MAPE for AM and PM peak periods were higher than off-peak and night-time periods 

for both through and left turn movement models. Hence, specific models were developed using 

refined subsets of data for peak periods only. Table 24
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Table 25 show the calculated performance measures for through and left-turn movement models 

for peak periods, respectively. The measures show better performance measures for generic 

models as well as groups models. The groups average MAPE was 7% for through movement 

models and 2% for left turn movement models. Moreover, the average MAE was 4.8 for through 

models and 0.8 for left turn movement models. Finally, the average RMSE values were 7.08 and 

1.58 for through and left turn movement models, respectively.  

The results show that Group 3 at US 17/92 corridor consistently had bad performance 

during peak and off-peak periods. Thus, the developed TMC algorithm is not recommended to 

emulate the GRIDSMART system at this intersection. Further, the GRIDSMART system should 

be kept at some intersections to provide the algorithm with the required data from upstream and 

downstream intersections. Hence, the study concludes that the developed TMC algorithm could 

emulate GRIDSMART at some intersections based on the performance measures in Tables 13 to 

16. Figure 28 shows the suggested locations to use the developed TMC algorithm. It shows that 

the developed TMC algorithm could be implemented at six intersections (two at US 17/92 and 

four at US 441). Moreover, it is recommended to implement peak period models for through and 

left-turn movements at the AM and PM peaks and use the generic models for other time periods.  

The performance measures were compared to a latest study that aimed to develop short-

term prediction algorithm of movements at intersections based on the Partial Least Square model 

(PLS). The developed PLS algorithm was compared to different prediction models (ARIMA, k-

NN and SVR). The RMSE and MAPE in their study were 8.34% and 16.68% respectively (Li et 

al., 2020). The developed turning movement estimation models in this study have better 

performance. Moreover, our study is the first attempt to estimate cycle-level aggregated through 

and left-turn movements at signalized intersections. 
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Figure 28: Suggested locations to utilize developed TMC algorithm 
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Table 24: Performance measures for through movement models (peak periods) 

Test Dataset Average AM Peak PM Peak 

Corridor Group MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE 

Two Corridors -- 5.3 7.1 14.0% 5.1 7 13.7% 5.4 7.2 14.6% 

Mills Corridor -- 5.7 7.5 14.4% 5.4 7.1 15.5% 6 7.9 13.1% 

Mills Corridor 
US 17/92 

Grp1 4.5 6.4 10.6% 3.7 5 9.1% 5.5 7.7 12.4% 

Grp2 5.6 7.3 11.6% 5.1 6.8 12.8% 5.9 7.7 10.0% 

Grp3 5.8 7.4 17.0% 5.3 6.9 18.0% 6.3 7.9 16.0% 

Grp4 5.9 8.1 12.0% 5.9 8.3 13.5% 5.9 7.7 9.6% 

OBT Corridor -- 4.8 6.6 13.0% 4.7 6.5 12.1% 5 6.7 13.9% 

OBT Corridor 
US 441 

Grp1 5.7 7.8 11.5% 5.8 8.3 12.0% 5.5 7.4 10.5% 

Grp2 2.3 4.7 9.2% 4.6 6.2 10.7% 5.3 8 10.9% 

Grp3 5.1 6.9 12.3% 4.7 6.3 13.1% 5.5 7.3 11.4% 

Grp4 4.8 6.7 10.5% 4.9 6.9 11.3% 4.8 6.5 9.7% 

Grp5 4.4 10.7 10.0% 4 5.4 10.5% 4.7 14 9.4% 

Grp6 4.4 5.9 11.9% 4.2 5.8 11.5% 4.5 6.1 12.1% 

Grp7 4.4 6 13.2% 4.6 6.3 15.0% 4.1 5.7 11.1% 

Groups Average 4.81 7.08 11.8% 4.80 6.56 12.5% 5.27 7.82 11.2% 
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Table 25: Performance measures for left turn movement models (peak periods) 

Test Dataset Average AM Peak PM Peak 

Corridor Group MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE 

Two Corridors -- 0.7 1.9 10.2% 0.5 1.5 9.6% 0.9 2.2 10.9% 

Mills Corridor -- 1.2 2.4 14.5% 0.8 1.8 10.8% 1.6 2.9 18.0% 

Mills Corridor 
US 17/92 

Grp1 1.7 3.3 9.6% 1.5 2.9 7.9% 1.9 3.7 11.5% 

Grp2 1.2 2.3 12.3% 1 2 13.2% 1.4 2.7 11.3% 

Grp3 0.9 1.8 13.2% 0.7 1.4 13.0% 1.2 2.2 13.5% 

Grp4 0.4 1.2 8.0% 0.2 0.7 3.4% 0.8 1.6 13.4% 

OBT Corridor -- 0.5 1.4 9.2% 0.5 1.4 10.9% 0.5 1.4 6.9% 

OBT Corridor 
US 441 

Grp1 0.2 0.7 4.2% 0.1 0.2 0.4% 0.3 0.9 7.7% 

Grp2 0.4 1.4 6.8% 0.5 1.5 9.3% 0.2 1.2 4.4% 

Grp3 0.8 1.8 11.4% 0.7 1.5 11.0% 1.1 2 11.6% 

Grp4 0.2 0.9 4.9% 0.4 1.2 8.2% 0.1 0.3 1.6% 

Grp5 0.1 0.3 0.3% 0.1 0.2 0.5% 0.1 0.3 0.1% 

Grp6 1.7 2.6 26.0% 1.5 2.3 30.0% 2.2 3 18.0% 

Grp7 0.4 1.1 7.0% 0.7 1.5 13.2% 0.1 0.2 0.2% 

Groups Average 0.73 1.58 9.4% 0.67 1.40 10.0% 0.85 1.65 8.5% 
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3.5.2 Validation of Model Performance under Abnormal Conditions 

The transferability of the developed models was further validated for abnormal 

situations. Thus, accident data were collected during the same time period of the GRIDSMART 

data. Two accidents were selected for analysis, one at each corridor. The data for an hour that 

includes time of the accidents was utilized to test the developed model. Figure 29 illustrates 

the estimated turning movements when an accident occurred at the US 17/92 corridor and 

Princeton street intersection. It shows that the estimated model instantaneously captured the 

accident. Moreover,  

Table 26 shows the corresponding performance measures for the test hour. It shows both 

through and left turn movements models has good performance with MAPE of around 10%. 

 

Figure 29: Estimated turning movements when an accident occurred at US 17/92 and Princeton street 
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Table 26: Performance measures for the model’s response to accident at US 17/92 and Princeton 
street 

Performance Measure Through Movement Left Turn Movement 

MAE 5.6 1.5 

RMSE 9.3 2.2 

MAPE 10% 10.50% 

Similarly, Figure 30 illustrates the estimated turning movements when an accident 

occurred at US 441 corridor and Robinson street. It also shows that the estimated model 

instantaneously captured the accident. Moreover, Table 27 shows the corresponding 

performance measures for the tested hour. The MAPE values were 8.7% and 6.7% for through 

and left turn movements models respectively. 

 

Figure 30: Estimated turning movements when an accident occurred at US 441 and Robinson street 

Table 27: Performance measures for the model’s response to accident at US 441 and Robinson 
street 

Performance Measure Through Movement Left Turn Movement 

MAE 4.9 0.4 

RMSE 6.1 1.1 

MAPE 8.7% 6.70% 
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3.6  Summary 

Data for 11 intersections on US 441 corridor and 8 intersections on US 17/92 were downloaded 

from the GRIDSMART system. The intersections were divided into eleven groups considering 

distance between intersections, number of access points, minor roads, and data availability. 

Each group consists of three consecutive intersections. Traffic volume and signal data from the 

GRIDSMART system was processed and aggregated at the cycle level for weekdays. 

Afterwards, general features such as time periods, directions of movements, group number and 

corridor name were added to the processed dataset. Finally, fourteen datasets were prepared 

and complied, each dataset includes 110 features. The datasets were utilized in developing 

general turning movement estimation algorithms as well as individual algorithms for each 

specific corridor and group.  

The GRIDSMART data was validated by comparing it with ground truth data that were 

collected from four intersections along the US 17/92 corridor (intersections at Nebraska St., 

Princeton St., Rollins St., and Virginia St). Data were processed and compared at the cycle 

level using MAE and MAPE as performance measures. The validation results show some 

misclassification in left-turn movements at Princeton St. Moreover. Meanwhile, for the 

intersection at Rollins St., there were big variation between ground truth data and 

GRIDSMART data. Finally, the average MAPE for other intersections was around 10%. 

Based on previous short-term traffic forecasting studies, parametric and non-parametric 

models were applied, tuned, and tested (i.e., negative binomial model, finite mixture model, 

multivariate adaptive regression spline, neural networks, random forest, and gradient boosting). 

The models were compared and the GBDT model with the best performance was chosen to be 

utilized in estimating short-term turning movements at signalized intersections. The processed 

datasets include a large dataset that combines two corridors (US 17/92 and US 441), individual 
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datasets for each corridor and individual datasets for each group of intersections. GBDT models 

hyperparameters were tuned and cross-validation was implemented to avoid overfitting. 

Moreover, variables selection was carried out based on relative influence values and marginal 

effects and SE were calculated to quantify the effects of variables. Finally, a total of 56 models 

were trained and compared to estimate turning movement counts at signalized intersections (28 

models for all time periods datasets and 28 models for AM and PM peak periods datasets). The 

groups models’ performance measures were better than the generic models for through 

movement prediction. However, for left turn movements, the generic models could have around 

10% percentage errors and close to the group average values along different time periods. 

The transferability of developed models for the abnormal traffic was validated. Two 

accidents were selected for analysis, one at each corridor. The results show that the estimated 

model could instantaneously capture the accident. Moreover, the MAPEs for both through and 

left turn movements models were 10% at US 17/92. For the US 441 corridor, MAPEs were 

8.7% and 6.9% for through and left turn movements models respectively. The results concluded 

that the developed TMC algorithm could emulate GRIDSMART at several intersections based 

on the performance measures shown in Tables 13 to 16. Six intersections (two at US 17/92 and 

four at US 441) were recommended to use the developed algorithms. Meanwhile, the 

GRIDSMART system could be installed at other intersections to detect and provide required 

data.  
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CHAPTER 4. ANALYSIS OF THE MIOVISION DATA 

4.1 Data Collection and Preparation 

Miovision is another camera-based detection system, which could detail movement counts at 

intersections in Seminole County. One of Miovision company’s products is TrafficLink, which 

is a platform that helps traffic engineers create more responsive and efficient traffic networks. 

This platform was utilized to access traffic data for signalized intersections.  

4.1.1 Study Area and Miovision Data Collection 

Miovision TrafficLink was utilized to download traffic counts data at signalized intersections. 

On the TrafficLink platform, only four intersections along the SR 434 corridor have available 

data. Figure 31 shows an overview where Miovision data were collected. The system provides 

5-minute aggregated turning movements and the data of only four intersections at the SR 434 

corridor (Lake Brantley Dr., Wekiva Springs Road., Springs Blvd., and Sanlando Springs) were 

available.  Table 28 summarizes the availability for approach volume data from September to 

December of 2019. The table shows that the data availability was not stable. September’s data 

was downloaded and explored for two intersections: SR 434 at Lake Brantley Dr. (SEM-1230) 

and SR 434 at Wekiva Springs Rd. (SEM-1240). Two main issues were observed in the 

downloaded data. First, the timestamp variable in the dataset refers to the date the data was 

downloaded, not the corresponding date of the data. Second, the timestamp of the downloaded 

data changes based on the time zone, which requires an adjustment. Preliminary analysis was 

carried out using the downloaded data from the TrafficLink platform. 
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Figure 31: Miovision Study Area 

Table 28: Availability of Miovision data 

Intersection September October November December 
SR 434 and E Lake 

Brantley Dr.  
(SEM - 1230) 

From 1st to 12th 
All volumes 

are zeros 
From 1st to 7th All volumes are zeros 

SR 434 and Wekiva 
Springs Rd.  

(SEM - 1240) 
Whole month Whole month From 8th to 30th 

From 1st to 16th and from 20 to 
24th 

SR 434 and Springs 
Blvd,/Gum St.  
(SEM - 1245) 

Whole month 
From 1st to 

15th 
-- -- 

SR 434 and 
Sanlando Springs 

(SEM - 1250) 
From 1st to 12th 

All volumes 
are zeros 

From 1st to 7th All volumes are zeros 

 

 Due to missing data from the initial download, the UCF team and FDOT coordinated 

with Miovision to obtain one-minute aggregated data for September 2019 at the same 

intersections. The new information was provided directly by Miovison. The data was provided 

on March 18th, 2020. The new Miovision data contains Coordinated Universal Time (UTC), 

Local Time Zone (LTZ), and turning movements counts per one minute. This data was utilized 

to validate Miovision system by comparing it with Automated Traffic Signal Performance 

Measures (ATSPMs) data. Local Time Zone (LTZ) was used to indicate the Miovision time.  

4.1.2 Automated Traffic Signal Performance Measures (ATSPMs) Data  

The ATSPM data for SEM-1230 and SEM-1240 for the same time period were downloaded 

from FDOT District 5 backup data. Originally, ATSPM provides events data, it contains four 
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variables:  Signal ID, Timestamp, Event Code, and Event Parameter. The Event Code indicates 

the signal phase while the Event Parameter indicates the detector. The Event Parameter 

provides both upstream (advanced) detector and stop-line detector data for through movement. 

Hence, ATSPM data at the upstream and stop-line detectors were aggregated into one minute. 

The aggregated data at the main approaches (i.e., eastbound and westbound) of the two 

intersections during the PM peak periods were plotted in Figure 32. It shows that the advanced 

detector volume and stop-line detector volume are consistent.  

 

Figure 32: One-minute aggregated data for upstream (advanced) and stop-line detectors 

Further, mean absolute difference and mean percentage difference were calculated in order to 

compare the upstream (advanced) detector and stop-line detector data. Equations (8) and (9) 

define these comparison measures, respectively.  
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 𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  
1

𝑛
∑|𝑦1 − 𝑦2| (8) 

 𝑀𝑒𝑎𝑛 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = ( 
1

𝑛
∑

𝑦1 − 𝑦2

𝑦2
) ∗ 100 (9) 

where y1 indicates the stop-line detector data and y2 indicates the advanced detector data. 

Table 29 shows the calculated comparison measures. It shows that the stop-line detectors could 

detect over 10% less vehicles for most cases, compared to the advanced detectors. It is expected 

because the stop-line detector could miss some vehicles due to its size and the advanced 

detector could also catch the left-turn vehicles. Both of them were compared to the Miovision 

data. 

Table 29: Comparison measures for advanced detector and stop-line detector through movement 
data 

Intersection ID Approach\Movement Mean Absolute Difference Mean Percentage Difference 

SEM-1240 
Eastbound 3.23 -11.31% 

Westbound 3.28 -20.00% 

SEM-1230 
Eastbound 2.36 -16.73% 

Westbound 1.56 -0.31% 

 
4.2  Data Validation 

The main objective of this task is to validate the Miovision data by comparing it to the ATSPM 

data at the same signalized intersections. Thus, aggregated one-minute data for both ATSPM 

and Miovision (new one-minute aggregated data that was recently provided) were plotted for 

the main corridor SR 434 (East-West direction) at intersections Lake Brantley Dr. (SEM-1230) 

and at Wekiva Springs Rd. (SEM-1240) in Figure 33 and Figure 34, respectively. Note that 

“ATSPM_adv” refers to the ATSPM data at the advanced detector and “ATSPM_stp” refers 

to ATSPM data at the stop line. The plots show data for the PM peak hour (17:00-18:00) and 

one off-peak hour (13:00-14:00). Moreover, mean absolute difference and mean percentage 

difference as defined in equations (8) and (9) were calculated. Note that y1 indicates Miovision 

data and y2 indicates ATSPM data in the two equations. Table 30 summarizes the results.  



104 
 

 

Figure 33: Miovision and ATSPM data – SR 434 and Lake Brantley Dr. Intersection (SEM-1230) 
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Figure 34: Miovision and ATSPM data – SR 434 at Wekiva Springs Rd. Intersection (SEM-1240) 
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 The results show that the through movement data from Miovision is closer to the data 

of the ATSPM stop-line detector. Thus, it was found that Miovision could detect at least 9.06% 

less through volume than the ATSPM data. Moreover, it could identify more vehicles for left-

turn volume for most cases. The result is expected since the stop-line detector could miss the 

left-turn vehicle due to the large loop.  

Table 30: Comparison measures for advanced detector and stop-line detector through movement 

Intersection 
ID 

Approach\ 
Movement 

Mean Absolute Difference Mean Percentage Difference 

Through 
Stop line 

Through 
Advanced  

Left Turn 
Through 
Stop line 

Through 
Advanced  

Left Turn 

SEM-1240 
Eastbound 4.87 7.09 0.85 23.24% 24.35% -5.32% 
Westbound 5.73 8.14 2.58 56.86% 63.33% -47.11% 

SEM-1230 
Eastbound 3.67 4.9 1.4 9.06% 21.39% -27.52% 
Westbound 3.86 4.66 0.41 14.28% 11.33% 19.64% 

4.3  Summary 

Miovision five minutes aggregated data was downloaded from TrafficLink platform at only 

four signalized intersections in Seminole County. Preliminary validation was carried out using 

this data. For the results please see Appendix D.  

Afterwards, new one-minute aggregated turning movement data for September 2019 

was provided at the same locations on March 18th, 2020. This data was utilized in validating 

Miovision system using ATSPM data. Hence, ATSPM data at upstream (advanced) and stop-

line detectors was downloaded and aggregated in one-minute increments for the same time 

period for two intersections with corridor SR 434, at Lake Brantley Dr. (SEM-1230) and at 

Wekiva Springs Rd. (SEM-1240). 

First, the ATSPM data at the advanced and stop line detectors were compared. It shows 

that the stop-line detectors could detect over 10% less vehicles for most cases, compared to the 

advanced detectors. Afterwards, both datasets were compared with the aggregated one-minute 

Miovision data in order to validate it. The validation indicated that the Miovision detect at least 

9.06% less through vehicles compared to ATSPM.  The results also showed that Miovision 

could detect similar or less through volume than the ATSPM data with average mean absolute 
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difference of 4.5 vehicles per minute. Moreover, it identifies more vehicles for left-turn 

volumes for most cases with average mean absolute difference of 1.37 vehicles per minute. 
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CHAPTER 5. SUMMARY AND CONCLUSIONS  

5.1 Summary 

In this research project, the main objective was to develop algorithms to estimate turning 

movements at signalized intersections using traffic data from adjacent intersections. Aiming to 

achieve this objective, three main tasks were accomplished: 

1. Comprehensive literature review to illustrate the studies that aimed to 

predict/estimate different traffic parameters  

Previous studies were reviewed to conclude the most efficient methodological approaches to 

estimate traffic parameters. It also summarized the utilized data in literature to develop 

parametric and non-parametric (machine learning models) as well as the performance measures 

that were commonly used to evaluate the developed models. 

2. Data validation of the GRIDSMART system 

Turning movements data from the GRIDSMART system was validated by comparing its data 

with the corresponding data counted manually. The results suggested that the detection 

accuracy for movements with high volumes are acceptable. As a result, the GRIDSMART data 

was utilized to develop different turning movement estimation algorithms. Moreover, sequence 

of intersections was determined considering several factors: correlation, coefficient of 

variation, distance between intersections, number of access points/stop-controlled intersection 

between two consecutive intersections, and data availability. As a result, a total of 19 

intersections were divided into four groups on US 17/92 and seven groups on US 441. The 

collected data was divided into two parts: one is to develop algorithms and the other is to 

validate the developed algorithms. The accuracy of sequence-level and generic algorithms was 

validated and compared for each sequence of intersections.  
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3. Turning movement estimation algorithms development using the GRIDSMART data 

Different approaches that were widely employed in previous short-term traffic forecasting 

studies (parametric models, machine learning models, and deep learning models) were 

followed to develop a comprehensive turning movement estimation model. Six models were 

applied, tuned, and tested: negative binomial model, finite mixture model, multivariate 

adaptive regression spline, neural networks, random forest, and gradient boosting. The models 

were developed to estimate corridor-level (North-South direction) through and left-turn 

movements. They were trained to estimate one traffic movement at a time. Three performance 

measures were utilized to evaluate the developed models: Mean Absolute Error (MAE), Root 

Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). An extensive 

comparison was carried out to determine the best methodological approach to estimate turning 

movement estimation algorithms for individual groups, each corridor, and for the whole study 

area. Based on the model performance, a list of intersections where the developed algorithms 

could be applied was provided.  

4. Analysis of the Miovision data 

The Miovision five-minute aggregated data was downloaded from TrafficLink platform at 

only four signalized intersections in Seminole County. Preliminary validation was carried out 

using this data. Afterwards, new one-minute aggregated turning movement data was utilized 

in validating Miovision system using ATSPM data. Hence, ATSPM data at upstream 

(advanced) and stop-line detectors was downloaded and aggregated in one-minute increments 

for the same time period. The ATSPM data at the advanced and stop line detectors were 

compared. It shows that the stop-line detectors could detect over 10% less vehicles for most 

cases, compared to the advanced detectors. Afterwards, both datasets were compared with the 

aggregated one-minute Miovision data in order to validate it. The results also showed that 

Miovision could detect similar or less through volume than the ATSPM data with average mean 
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absolute difference of 4.5 vehicles per minute. Moreover, it identifies more vehicles for left-

turn volumes for most cases with average mean absolute difference of 1.37 vehicles per minute. 

 

5.2 Conclusions 

In the last decade, research focused on predicting traffic volume at intersections and freeways. 

Limited studies have been conducted to estimate/predict turning movement counts at signalized 

intersections. To the best of the authors’ knowledge, this study is the first attempt to estimate 

short-term turning movement counts at signalized intersections at the cycle level. It extends 

past research and aims to bridge the gap, as previous studies focused on estimating 15 minutes 

or one-hour traffic movements at signalized intersections with the total entering and exiting 

movements considered as inputs in the developed models. Moreover, in this study, it was 

assumed that the target intersection has no traffic volume data. Thus, implementing 

estimation/prediction algorithms at target intersections to provide traffic volumes will save the 

extensive cost of data collections, since detector systems cost more than $20,000 per 

intersection. 

Two main data sources were explored: GRIDSMART and Miovision TrafficLink 

systems. First, GRIDSMART data was downloaded, processed, and aggregated at the cycle 

level. Then, intersections were combined in 11 different groups, and each group consists of 

three consecutive intersections. The Gradient Boosting Decision Tree (GBDT) model was 

chosen to estimate turning movements as it outperformed other parametric and nonparametric 

algorithms. Thus, totally 56 models were trained and tested using the GBDT model. The results 

show that implementing a specific estimation algorithm for a certain group improves the 

performance measures. Moreover, for the developed generic models using all day data, MAPE 

values of AM and PM peak periods were higher than off-peak and night-time periods for both 

through and left-turn movement models. Hence, specific models were developed using refined 
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subsets of data for peak periods only. The groups average MAPE was 7% for through 

movement models and 2% for left turn movement models. Besides, the performance measures 

for all the developed models outperformed the models in the most recent literature. 

The study concludes that the developed Turning Movement Estimation (TMC) 

algorithms could emulate GRIDSMART at most intersections. To achieve the best 

performance, it was recommended to apply the developed algorithms at six intersections (two 

at US 17/92 and four at US 441) while the GRIDSMART system could be used to detect 

movements at the rest intersections and provide the required data for the algorithms. Moreover, 

it was recommended to use peak period models to estimate through and left-turn movement at 

the AM and PM peaks and the generic model could be used for other time periods. The right-

turn movements were not estimated in this study since it is not controlled by the signal timing. 

Both models for individual intersection group and all groups were developed. The two types 

of models could provide the state-of-the-art accuracy compared to the previous studies. While 

the models for individual intersection group could provide more accurate estimation results, it 

is less convenient to program models for each intersection. Hence, the adoption of the models 

should depend on the practitioners’ needs.  

The Miovision system provides 5-minutes aggregated turning movements data. The 

data was downloaded at the four locations in Seminole county considering the data availability. 

However, some difficulties were faced while analyzing the data. First, the timestamp variable 

in the dataset refers to the date when the data was downloaded. Also, the timestamp changes 

based on the time zone. Afterwards, one-minute aggregated data was provided for the same 

locations. The data was compared to one-minute aggregated ATSPM data. For through 

movements, the Miovision data was compared with aggregated data at both upstream 

(advanced) detector and at stop-line validation. The results illustrated that Miovision detected 

at least 9.06% less through volume than the ATSPM data. However, for left-turn volume, 
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Miovision could help identify more vehicles in most cases.  

The developed algorithms could be used estimate the through and left-turn movements 

on the major approach as the detectors are installed along corridors. It is recommended to 

aggregate turning movement counts at the cycle level instead of 5 or 10 minutes, to obtain a 

better estimation performance. Besides, it is suggested to install detectors at roads intersecting 

with the corridors to detect vehicles at the network level. It could help extend the algorithms to 

the minor approach and improve the accuracy of algorithms. 
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